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Abstract: Numerous centrality measures have been introduced as tools to determine the importance
of nodes in complex networks, reflecting various network properties, including connectivity, surviv-
ability, and robustness. In this paper, we introduce Semi-Local Intregation (SLI), a node centrality
measure for undirected and weighted graphs that takes into account the coherence of the locally
connected subnetwork and evaluates the integration of nodes within their neighbourhood. We
illustrate SLI node importance differentiation among nodes in lexical networks and demonstrate its
potential in natural language processing (NLP). In the NLP task of sense identification and sense
structure analysis, the SLI centrality measure evaluates node integration and provides the necessary
local resolution by differentiating the importance of nodes to a greater extent than standard centrality
measures. This provides the relevant topological information about different subnetworks based on
relatively local information, revealing the more complex sense structure. In addition, we show how
the SLI measure can improve the results of sentiment analysis. The SLI measure has the potential to
be used in various types of complex networks in different research areas.

Keywords: centrality measure; node importance; complex networks; applications of graph data
processing; lexical graph analysis; sentiment analysis

1. Introduction

In the era of Big Data, enormous amounts of data are being collected and analyzed to
gain important information and make decisions in a variety of application areas, from man-
aging transportation networks, organizing distribution and delivery, studying biological
networks, to organizing the Internet. Graphs ecame the obvious choice for representing the
information structure of many data systems. In addition to standard graph theory, a mod-
ern wave of mathematical approaches, techniques, and tools are being created, developed,
and applied by scientists in various fields, in order to optimize such complex processes.

One of the most important tasks in network analysis is the detection of central or
important nodes, which is still a challenge as it depends on the context used. Although
many centrality measures are in common use, the category itself is not precisely defined.
Many researchers have attempted to provide a mathematical definition of centrality by
establishing a set of criteria that measures must meet in order to be considered as centrality
measures [1]. Moreover, no formal theory has been developed to explain the differences in
behavior among them. According to [1], ‘There is certainly no unanimity on exactly what
centrality is or on its conceptual foundations, and there is little agreement on the proper
procedure for its measurement’. Arguably, that is still the case today.

Among the widely used centrality measures [1–3], some express local node properties
while others are more global. The simplest and best known centrality measures, degree
and weighted degree (also called strength), reflect strictly local network characteristics by
considering only the immediate neighbourhood. Consequently, the (weighted) degree does
not necessarily indicate which node plays the most important role in the whole network.
In fact, among the nodes with the same degree, some of them may be very central and

Mathematics 2022, 10, 405. https://doi.org/10.3390/math10030405 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10030405
https://doi.org/10.3390/math10030405
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3230-6891
https://orcid.org/0000-0001-8842-3830
https://orcid.org/0000-0003-4177-5307
https://doi.org/10.3390/math10030405
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10030405?type=check_update&version=1


Mathematics 2022, 10, 405 2 of 16

the others peripheral, which is not detected by the node degree alone. Moreover, bridge
nodes are an important class of nodes, because they connect subnetworks of the original
network, but may not have the highest degree. In contrast, other centrality measures
are global [4–6]. For example, PageRank [7] and eigenvector centrality, take into account
information about the nodes and edges of the entire network. For example, closeness
centrality and betweenness centrality involve the shortest paths between the node and all other
nodes in the network, and thus reflect global network features. It is important to emphasize
that the algorithms for such centrality measures, which require global information to
compute the importance of nodes in a network, often have very high time complexity. For
this reason, it is of great interest, especially for networks with many nodes and/or intricate
structure, to develop new and effective centrality measures that are not computed using
the entire network information, but instead focus on smaller subnetworks containing the
node [8–12]. This particular task still opens up possibilities for different approaches to the
problem, considering various system properties that are analyzed, including efficiency,
connectivity, shortest paths, influence, robustness, etc.

Although several approaches to defining and analyzing semi-local node importance
have been explored in the literature, focusing on various network properties, including
survivability and robustness of the network, to the best of our knowledge none of the
existing centralities recognises a high level of node integration. To identify and evaluate
the property of interconnectivity among nodes in the neighbourhood of complex networks,
in this paper we introduce Semi-Local Integration (SLI) centrality measure. This centrality
evaluates nodes according to how strongly they are integrated in the local subnetwork.
This is obtained by taking into account the weighted degree centrality of the node itself as
well as the weighted degree of the nodes in its slightly wider neighbourhood. In addition,
the coherence of the neighbouring subnetwork is considered.

We illustrate SLI node importance differentiation among nodes in lexical networks
and demonstrate its potential in natural language processing (NLP). We implemented the
SLI centrality measure in the ConGraCNet web application [13], which features the graph-
based methodology developed for various lexical tasks. Using the SLI measure, we have
improved lexical tasks that can take advantage of the SLI ’s ability to discriminate the local
important nodes in a coordination collostruction weighted graph, such as tasks of sense
structure and word sentiment analysis. By using relatively local graph information, we
were able to obtain a computationally efficient centrality measure and thus obtain relevant
information about different subgraphs, and use the obtained SLI values of subgraph nodes
in propagating subgraph features such as the associated sense and sentiment potential.
This implementation shows that the SLI centrality is particularly suitable for applications
in complex networks and therefore could optimize the analysis of complex network and
subnetwork structures, including friend-of-a-friend (FoF)-based networks such as social
networks. The applications clearly go beyond linguistics and social sciences, and extend to
other research areas. The Python function implementing the SLI measure is available at
GitHub repository [14].

The paper is organized as follows. We conclude this section with an overview of
the related work. We define the SLI centrality measure in Section 2 and demonstrate its
suitability for lexical applications in Section 3. We conclude with Section 4, where we also
propose future research directions.

Related Work

The evaluation method for the importance of a node in a network can be based on
a local, semi-local, or global approach. Among the reasons of having so many different
approaches to evaluate centralities are the properties of the systems being revealed by
the centrality. For example, in a large information network it is very important to backup
servers in order not to lose important data, so a redundant design implies that the most im-
portant nodes in this case are those that increase the robustness of the network. Connectivity
of the network is another important property in many applications, such as transportation,
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security, epidemiology, psychology, social studies and others [15–19]. In this context, bridge
nodes feature prominently as key nodes in complex networks, even though they often do
not have a high degree, but connect important subnetworks. Identifying bridge nodes of a
network therefore requires a topological analysis of the node neighborhood, such as was
done for the definition of the neighborhood-based bridge node centrality tuple in [20].

The semi-local centrality measure of [9] relates the importance of nodes to the surviv-
ability and robustness of networks and identifies key nodes for maintaining the underlying
function of the network. The failure of key nodes, such as bridge nodes, has a large impact
on the network, with either negative (e.g., loss of communication) or positive interpre-
tation (e.g., controlling the spread of viruses, preventing security breaches, etc.). This is
orthogonal to our approach, while in [9] occurrence in a cycle reduces the importance
due to the available alternative path in the network, occurrence in more cycles in our
intended interpretation of high integration indicates better interconnection of the node into
its local subnetwork. Furthermore, the networks considered in [9] are unweighted, while
we consider weighted and unweighted networks.

There are several approaches to the semi-local node importance in weighted net-
works [21–24]. A generalization of degree and shortest path was introduced in [24], rating
a node the more important, the more it acquires strength in the network. An interesting
study of node importance related to prominence and control in the fields of transportation,
scientific collaboration, and online communication is presented in [22]. It formalizes the
tendency of prominent nodes to establish connections among themselves. A series of
increasingly selective ‘richness-based clubs’ of nodes is considered, based on the weight of
edges connecting the ‘members’. However, even this approach does not provides insight
into qualitative differentiation between nodes in terms of local integration.

2. Semi-Local Intregation Centrality

Centrality is one of the fundamental concepts in graph theory and network analysis.
Centrality measures attempt to identify the most important nodes in a network and relate
the prominence of the nodes in a network numerically.

We define the SLI centrality measure of a node that depends on several features of its
neighbouring subnetwork. The SLI measure of a node depends on the weighted degree of
the node itself and its neighbours. We classify a node as more important if it is adjacent to
more nodes with higher weighted degree, i.e., we consider ‘friends’ of the node and their
‘friends’.

The measure also considers the number of cycles that include the node. Cycles
play an important role in many graph-theory applications, including chemistry, biology,
and network analysis. More specifically, cycles in FoF networks are an indicator of the
interconnectedness between friends of friends and their friends. FoF subnetworks with
few cycles exhibit low coherence, while nodes that are included in many cycles are part
of a well-connected subnetwork and are part of a coherent local community. Therefore,
such nodes can be considered more important in the context of integration. As an example,
consider the small network shown in Figure 1, in particular nodes v1, v7 and v70. Nodes v7
and v70 do not appear in any cycle, while node v1 is a member of four simple cycles. This
indicates a much stronger integration of the node v1 into the newtork G1. Note that one of
the simple cycles that includes v1 has a length of four, i.e., it extends the integration range in
the network from a local, immediate neighbourhood to a broader, semi-local subnetwork.

Finally, the measure also takes into account the edge weight, which is a measure of
the relatedness of the endpoint nodes. For example, node v70 can be considered more
strongly connected to the rest of the network due to its higher weight than node v71 with a
lower weight.
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Figure 1. The example network G1 with edge labels representing weights.

2.1. SLI Definition

In this section, we propose a graph-theoretical definition of node integration. Given an
undirected and weighted graph G = (V, E), we use the following notation in the definition
of the SLI node centrality:

deg(v)—denotes the degree of the node v ∈ V;
dw(v)—denotes the weighted degree (strength) of the node v ∈ V;
eab = eba—denotes the edge between the nodes a, b ∈ V;
w(e)—denotes the weight of the edge e ∈ E;
Ev—denotes the set of edges incident to v ∈ V, Ev := {x | evx ∈ E};
PG—denotes the cycle basis of the graph G;
p(e)—denotes the number of cycles in PG that contain the edge e ∈ E.

The cycle basis PG is the minimal set of simple cycles of G that allows every cycle of G
to be expressed as a symmetric difference of basis cycles, capturing the local interconnection
reach of nodes. The number of local simple cycles that include the edge e, p(e), contributes
to the importance of nodes incident to e. We define the edge cycle factor of each e ∈ E,
λ(e), as:

λ(e) := p(e) + 1. (1)

For each node v of G we calculate the node importance by increasing the node’s
weighted degree by the importance contribution of its incident edges:

I(a) := dw(a) + ∑
eab∈Ea

I(eab), (2)

where the importance of the edge e, I(e), is defined as follows:

I(eab) := λ(e) ·
(
dw(a) + dw(b)− 2w(e)

)
· w(e) · dw(a)

dw(a) + dw(b)
(3)
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Node importance is then normalized to represent the percentil of node importance
share in the graph G. This defines SLI score of the node a:

SLI (a) :=
I(a)
SG
· 100, (4)

where SG is the sum of the unnormalized importance scores of all nodes of G:

SG := ∑
b∈V

I(b). (5)

In a more computational presentation, for a given graph G = (V, E) and the corre-
sponding edge weights and weighted degree scores of its nodes, the calculation of SLI is
performed by the following algorithm described in an intuitive metalanguage:

1. Find cycle basis of G, PG;
2. Find p(e) for all e ∈ E;
3. Find λ(e) for all e ∈ E, according to (1);
4. Find the set of edges E(a) for all a ∈ V;
5. Find I(e) for all e ∈ E, according to (2);
6. Find I(a) for all a ∈ V, according to (3);
7. Find S(G), according to (5);
8. Find SLI (a) for all a ∈ V, according to (4).

The Python function implementing the SLI measure is available at GitHub reposi-
tory [14].

2.2. Discussion on SLI Definition

In a nontrivial connected graph, by definition, none of the three factors in the above
definition of edge importance is equal to zero, i.e., each of these three components increases
the edge importance. Consequently, each edge incident to a node increases the node’s
importance. Note that the SLI of isolated nodes is 0, while the importance of edge points
of isolated edges is reduced to the weight of the edge.

The SLI scores of all nodes of the graph G1 shown in Figure 1 are listed in Table 1.
Since SLI is a normalized measure, it can help in the interpretation and comparison
of importance of nodes in the graph and in the analysis of importance distribution in
different graphs. Note that node v1 has the highest SLI score in G1 and carries over 40%
of the total importance in the graph. Several other top central nodes have high scores,
namely SLI (v2) = 16.225, SLI (v4) = 13.269, SLI (v6) = 9.614, SLI (v5) = 6.961 and
SLI (v3) = 6.664. Note that among the top ranked nodes, the highest score is more than six
times the lowest score, illustrating the non-trivial allocation of importance due to the graph
structure. Many nodes in the graph have very low importance, including all leaf-like nodes
such as v72 with SLI (v72) = 0.065. This is an indicator of much lower node integration in
the graph.

We now analyze how the definition of the SLI centrality measure reflects the structure
of the graph. The weighted degree of a node is increased by the importance of its edges.
Through the importance of associated edges, the SLI score reflects the integration of the
node into the local subgraph.

The first component in (Equation (3)) that contributes to the edge importance is the
edge cycle factor λ(e), which increases the importance based on the number of simple
cycles of G on which the node sits. For example, in the graph shown in Figure 1, the node
v1 is contained in the largest number of simple cycles, four. The nodes v4 and v6 are also
included in a relatively large number of cycles, namely three, while the leaf-like nodes are
obviously not included in any cycle. However, node v7 is not a leaf-like node, but it is also
not included in any cycle. The node v7 together with the leaves v70, v71 and v72, represents
a subgraph of G1 that is not strongly connected to the rest of the graph.
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The second component reinforcing the importance of the edge e,

dw(a) + dw(b)− 2w(eab),

reflects the integration of the endpoints of the edge with the rest of the graph. Note
that dw(a)− w(eab) corresponds to the total contribution of the edges incident to node a,
except edge e, to the weighted degree of a. This represents the strength of the connection of
a with its other neighbours. Thus, this component, denotes the remaining integration of the
two endpoint nodes of the edge eab into the local subgraph. Therefore, the integration of
the node itself and the integration of its neighbours into the local subgraph, strengthens the
node importance. As an example, consider the edges ev1v7 and ev7v72 . Although these edges
have the same weight, the endpoint nodes of edge ev1v7 are more strongly connected to the
rest of the graph. The edge ev7v72 exhibits a much less overall integration in the graph.

The third component,

w(eab) ·
dw(a)

dw(a) + dw(b)
,

reflects both the weight of the edge and the (im)balance in the weighted degree of its endpoint
nodes. The weight of the edge was not reflected in the other components, but should not
be disregarded. For example, among the leaf-like nodes connected to node v2, nodes v20,
v21, v22 and v23, node v21 is incident with the edge with the highest weight. The node v21
appears to be the most important among the mentioned nodes, since it is best connected
to the rest of the graph through the edge ev2v20 . This can be observed from the SLI scores,
since the score SLI (v21) is higher than the SLI score of any of the nodes v20, v22 and v23.
Similarly, the same edge ev2v20 contributes more to the importance of v2 than the edges
associated with other leaf-like nodes.

The remaining fraction involving the weighted degrees of the endpoint nodes a and b
adds the larger contribution to the endpoint with the higher weighted degree, i.e., the better
integrated endpoint. For example, in graph G1, node v1 has higher weighted degree than
node v2, so edge ev1v2 should contribute more to node v1.

Together with the SLI scores of the nodes of G1, we list the scores of a number
of other centrality measures in Table 1. The comparison shows that the values of SLI
behave differently from all the standard scores, namely, degree, weighted degree, betweenness
and PageRank. Note that the nodes in the table are ordered decreasingly according to
SLI , but none of the scores according to another centrality result ordered. Moreover,
the importance polarization by SLI is much more pronounced compared to all other
centralities, as can be seen in Table 1. Compared, for example, with betweenness, SLI
reveals some differentiation between leaf-like nodes, albeit to a small extent, e.g., node v21
has a higher SLI score than node v22 due to the incidence of edge ev2v21 having a larger
weight than edge ev2v22 .

The rather small network example given in Figure 1 already illustrates that overall the
SLI displays considerable polarization in ratings of the nodes according to the strength of
their interconnection in the local subnetwork.

Table 1. Comparison of different centrality measures of nodes in graph G1 illustrated in Figure 1.

Node SLI Degree Weigthed Degree Betweenness PageRank

v1 40.225 6 12.65 0.594 0.148
v2 16.225 7 9.4 0.345 0.118
v4 13.269 6 7.45 0.246 0.096
v6 9.614 5 6.1 0.147 0.076
v5 6.961 5 5.7 0.193 0.077
v3 6.664 6 5.65 0.259 0.081
v60 1.671 2 2.7 0.024 0.035
v7 1.238 4 3.6 0.239 0.071
v40 0.969 2 2 0.0 0.029
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Table 1. Cont.

Node SLI Degree Weigthed Degree Betweenness PageRank

v21 0.569 1 2 0.0 0.027
v52 0.546 2 1.4 0.0 0.022
v70 0.39 1 2 0.0 0.039
v23 0.224 1 1 0.0 0.017
v31 0.21 1 1 0.0 0.018
v20 0.166 1 0.8 0.0 0.015
v51 0.16 1 0.8 0.0 0.015
v41 0.15 1 0.75 0.0 0.014
v71 0.149 1 0.8 0.0 0.019
v22 0.139 1 0.7 0.0 0.013
v30 0.11 1 0.6 0.0 0.013
v61 0.088 1 0.5 0.0 0.011
v42 0.067 1 0.4 0.0 0.010
v50 0.067 1 0.4 0.0 0.011
v32 0.067 1 0.4 0.0 0.011
v72 0.065 1 0.4 0.0 0.013

2.3. SLI in Unweighted Graphs

In the case of an unweighted graph G, the SLI measure calculation reduces to the
following formula:

SLI (a) :=
I(a)
SG
· 100,

where the importance of the node a, I(a), is given by:

I(a) = deg(a) + ∑
eab∈Ea

I(eab),

and the importance of the edge e, I(e), is:

I(eab) := λ(e) ·
(

deg(a) + deg(b)− 2
)
· deg(a)

deg(a) + deg(b)
.

As an example of an unweighted graph and its SLI scores, we take the unweighted
version G2 of the graph G1 shown in Figure 1. Table 2 shows the corresponding SLI scores,
with the nodes ordered as in Table 1, i.e., according to the original, weighted SLI scores.
In addition, degree, betweenness and PageRank centralities of G2 nodes are shown. As
with the weighted version of the graph, the SLI ordering of importance does not coincide
with any of the other centralities. It exhibits a stronger polarization of importance and a
differentiation between the very important nodes and the nodes with the lowest importance.

The normalization of the SLI measure provides a clear interpretation of the relative
importance of the nodes in the graph and allows for a comparison between the two versions
of the graph, i.e., the comparative analysis of the values shown in Tables 1 and 2.

The role of edge weights is evident in a more pronounced relative scoring and or-
dering of nodes. Changing just one edge weight, e.g., decreasing the weight of edge
ev1v4 from 3 to 0.4, has a large effect on node importance ordering, permuting nodes from
v4, v6, v3 to v6, v3, v4. The differences in the SLI distribution in the graph can be even
more pronounced than in the above example. This is to be expected in complex networks
due to the non-uniform distribution of edge weights. Larger differences between edge
weights in the network, make the weighted SLI differentiation of node importance even
more pronounced.
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Table 2. Comparison of different centrality measures of nodes in graph G2, which is the unweighted
version of the graph G1 illustrated in Figure 1.

Node SLI Degree Betweenness PageRank

v1 18.433 6 0.594 0.087
v2 16.708 7 0.345 0.111
v4 15.543 6 0.246 0.091
v6 11.437 5 0.147 0.074
v3 12.892 6 0.259 0.094
v5 9.51 5 0.193 0.077
v7 3.512 4 0.239 0.073
v60 1.943 2 0.024 0.032
v40 1.951 2 0.0 0.032
v52 1.882 2 0.0 0.032
v21 0.427 1 0.0 0.02
v23 0.427 1 0.0 0.02
v31 0.418 1 0.0 0.019
v20 0.427 1 0.0 0.02
v41 0.418 1 0.0 0.019
v51 0.407 1 0.0 0.019
v22 0.427 1 0.0 0.02
v71 0.39 1 0.0 0.022
v30 0.418 1 0.0 0.019
v61 0.407 1 0.0 0.019
v70 0.39 1 0.0 0.022
v32 0.418 1 0.0 0.019
v42 0.418 1 0.0 0.019
v50 0.407 1 0.0 0.019
v72 0.39 1 0.0 0.022

3. Application of SLI in Lexical Networks

Graphs are widely used in NLP to represent large amounts of lexical data. Graph-
theoretic analysis of lexical networks can reveal features useful for human review and
consequently provide insights and ideas for automatic methods (for an overview of graph
methods in NLP, see [25]).

In our recent work [26–28], we used graph theory in an interdisciplinary approach to
tackle NLP tasks such as semantic similarity identification, sense association and structure,
lexical community labeling, and sentiment analysis.

This research has provided the main motivation for defining SLI centrality. The node
importance expressing high integration of nodes into the local semantic community, was not
adequately represented by standard centrality measures. Our goal was therefore to define
a centrality measure that reflects the importance of nodes in complex lexical networks and
many other networks with the specific structure studied from a similar point of view.

3.1. Application of SLI in the Analysis of Sense Structure

For the underlying graph representation of lexical networks, we extracted lexemes
from a tagged corpora based on coordinated syntactic-semantic constructions that reveal
a semantic similarity [29,30] . Figure 2 represents such a syntactic-semantic based lexical
network with sense associations of a seed word work.
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Figure 2. ConGraCNet network representation of the sense structure of a seed noun lexeme work.
The node size reflects the node SLI score.

The network is constructed from the 15 most frequent coordination collostructions [31],
called friends of the seed lexeme work, and the subsequent 15 most important collostructions
of each friend lexeme. The lexemes are represented as nodes, while the level of association
between two lexemes is expressed by the corpus measure of the collocation, stored in the
weight property of the corresponding edge. The weighted undirected FoF network captures
the semi-local emergent conceptual relatedness and the semantic domain’s structure of a
seed lexeme. The subgraph clusters structured by the lexical relations and their prominent
nodes reveal the polysemous aspects of the source lexeme. The lexical network clusters
represent the cognitively latent associative domains necessary for understanding the overall
(poly)semantic structure of a source lexeme. The association strength of a particular node
in this network relates to (a) the semantic relatedness to the source lexeme in the overall
network (b) the sense contribution of this node to the semantic domain in a sense cluster of
a source node. Clearly, more saliently connected nodes in the network carry more relevance
for the analysis of lexical sense relatedness and sense potential. This semantic salience
of a lexical node can be calculated using the graph centrality measures mentioned above.
However, each measure has its own method of calculating the most central nodes, which in
this case affects the assignment of a semantically salient nodes. The SLI measure captures
the semantic salience that is defined by the associative strength (edge weight) of a node,
integration with other nodes (degree, weighted degree), and the topological structure of
local integration expressed by the graph cycles (betweenness). The integration of all these
dimensions gives the SLI the necessary local resolution that allows for a more complex
discrimination of a node salience than any of the previously mentioned centrality measures.

The centrality scores of the most central nodes of the network shown in Figure 2 are
listed in Table 3. The nodes are sorted by SLI scores and illustrate the SLI importance
distribution, which ranges from about 11% to less than 0.2% of relative importance in the
entire network. This can be easily seen in Figure 2 by the node size, which reflects the node
SLI score. The striking polarisation in the scores shows the two most important nodes in
the semantic network of the source lexeme, the lexemes work and family. Then, the group
of lexemes that are highly relevant in the associated conceptual domains of the lexeme
work is revealed. These include the lexemes time, dedication, research determination, effort,
study, commitment, home, project, school, life and play. The remaining nodes of the network
are identified as more peripheral in the overall sense of the source lexeme.
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Table 3. Centrality in lexical dependency graph of noun lexeme work and SenticNet 6 sentiment
scores.

Lexeme Weighted Betweenness SLI SenticNet6
Degree ODV

work 96.35 6219.4667 11.0602 0.9
family 143.21 1615.5262 10.7711 0.883
time 115.68 1057.2845 7.7119 -
dedication 103.43 788.0095 7.3328 0.034
research 117.88 1459.5190 7.0717 0.883
determination 108.08 1037.9310 7.0436 0.231
effort 93.85 982.9595 6.3767 0.037
study 120.33 1687.6012 6.2252 -
commitment 97.82 855.6643 6.1272 0.704
home 107.3 1059.3940 6.0986 -
project 115.6 1705.4262 5.6272 0.9
school 107.21 1129.0250 5.6033 -
life 101.38 1188.8881 4.6721 -
play 96.1 1677 2.5525 -
passion 24.54 0 0.3868 1
business 23.7 21.0357 0.3673 -
money 18.79 0 0.1937 0.065

More importantly, as illustrated in Figure 2 using different node colours, network
communities are formed representing different senses of the source lexeme, each containing
the nodes with comparable importance in the subnetwork. For example, the source lexeme
work is a part of community containing the lexemes dedication, research, commitment, which
have the relatively highest importance in the subnetwork and carry the dominant semantic
properties of the lexical sense community. Similarly, the lexemes time and effort are the
most important nodes in the smaller subnetwork that contains other lexemes related to
resources, such as energy, expense, money, marketing, talent, space, date. These two nodes
have relatively close SLI scores that are much higher than those of the other nodes in their
subnetwork, and thus carry the core sense of this community. Such diversification of nodes
is not achieved by either weighted degree or betweenness. In particular, weighted degree does
not emphasize the centrality of the source node, since many nodes in the network have
higher weighted degree values. On the other hand, the betweenness scores often drop to
zero for a significant number of nodes, which then nullifies their participation in the sense
analysis of the local community.

The aspect of capturing the fine-grained resolution of semantic relatedness to the
source node can be used for pruning the less related nodes. This task is particularly impor-
tant for larger FoF networks with several hundred nodes from the network. Pruning out
less related nodes reduces information noise and semantic drift to less related senses. Fur-
thermore, such a pruned lexical network allows semantic analysis with less data overload,
preserving and highlighting the most relevant information. Figure 3 represents a pruned
network from Figure 2 with a seed noun lexeme work. The network was pruned to the top
50% of nodes according to SLI centrality.

The most important feature for the semantic analysis of such lexical networks is the
integration of nodes into subnetworks, which are themselves structured with respect to the
source node and form the sense structure of the source concept. The primary meaning of the
concept is reflected in the largest community, which usually contains the most important
node in the network, the source lexeme node. The size of the preserved communities
reflects the sense prevalence or the less frequent word sense/usage.
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Figure 3. ConGraCNet network representation of the sense structure of a seed noun lexeme work
pruned to top 50% nodes accoring to SLI centrality. The node size reflects the node SLI score.

In summary, the centrality obtained with SLI has promising applications for lexical
network analysis, starting with filtering out less relevant nodes in order to simplify and
emphasize the network structure and reduce computational data overload. It also highlights
the importance of the source node and enables more qualitative semantic analysis at the
level of subnetwork communities identified by a community detection algorithm [32–35]
at a selected granularity, i.e., resolution. These properties of the SLI measure could
advance NLP methods, e.g., improve the results we have obtained in the task of sense
labeling [27,28].

3.2. Application of SLI in Sentiment Analysis

Sentiment analysis uses NLP techniques and resources to address affective and subjec-
tive phenomena in texts by classifying linguistic expressions from single words (lexemes)
to multi-word expressions and longer texts, and assigning them a normalized range of
values, typically on a scale from −1 to 1 [36–38].

The simplest linquistic expressions that articulate sentiment are words. The types
of words that express sentiment are nouns, adjectives, verbs and adverbs. Some words
represent concepts with predominantly culturally associated positive feelings, such as
love, joy, heart, while others, such as violence, death, war, failure, express negative feelings.
Classification and numerical evaluation of word sentiment is estimated subjectively by
annotators based on psychological evaluation of words or by extending the already an-
notated dictionaries using various techniques and resources. The information about the
sentiment expressed by words is catalogued in sentiment dictionaries, using only posi-
tive/neutral/negative classification or a more refined estimates using numerical values
and different dimensions.

In the examples we present below, we use the SenticNet 6 sentiment dictionary [36],
one of the most comprehensive sentiment dictionaries available. Word sentiment in Sentic-
Net 6 is scored on a number of semantic dimensions, namely the ‘polarity_score’, ‘sensitiv-
ity’, ‘attitude’, ‘temper’, and ‘introspection’, and is expressed in numerical values between
−1 and 1. For example, lexeme failure has ‘polarity_score’ of −0.81 while the following
words are scored as follows: devotion 1, heart 0.9, love 0.83, partner 0.45, fighter 0.343, flower
0.054, roof 0, response −0.2, desperation −1.

In our work, on Sentiment Potential (SP) [27], we addressed the scarcity of available
sentiment dictionaries and problems in sentiment analysis of polysemous and homonymous
words, i.e., words with different and potentially unrelated meanings. For example, lexeme
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bat denotes both an animal and a baseball device. For another example, lexeme virus can
be associated with a disease or a computer malware. Moreover, the different senses of a
lexeme may have different affective potential. We addressed the above two issues using
sentiment propagation, which is intended to reflect both the main affective state and the
structure of the feelings expressed by a concept, either a lexeme or a conceptual community
of lexemes. The ConGraCNet [13] lexical network, which is a word sense network structure,
provides information for an enriched, more complex sentiment representation of sentiment
expressed by a word. For an example of SP, see Figure 4 showing SP of the lexeme work. As
can be seen in Figure 4, the sentiment scores of a single lexeme across its different sense
communities are reflected through a vivid illustrative, multi-layered representation.

Figure 4. Sentiment potential (SP) of noun lexeme work propagated from SenticNet using between-
ness centrality.

The SP illustration shown in Figure 4 includes the horizontal line marking the word
sentiment score from the SenticNet 6 dictionary, i.e., the Original Sentiment Value (ODV).
Another horizontal line marks the Assigned Dictionary Value (ADV) [27] of the lexeme
which is calculated from the corpus-based coordination dependency lexical graph FoFa
constructed for a chosen source lexeme a using the ConGraCNet method [13]. ADV of
a lexeme a is calculated using the available SenticNet 6 ODV sentiment values of lexical
nodes in the FoFa graph as follows:

ADV(a) :=

∑
x∈VD

a

v(x) · b(x)

∑
x∈VD

a

b(x)
, (6)

where b(x) is the betweenness measure of the node x in the FoFa graph, VD
a is the set of

nodes x ∈ FoFa with available ODV in SenticNet 6, and v(x) is the ODV score of lexeme x
in SenticNet 6. In addition to assigning the sentiment value to a source lexeme, the same
method of propagation can be used to assign the Graph Sentiment Value (GSV) [27] to a
graph. In the case of SP, GSV values are assigned to each subgraph of FoFa representing a
sense community in order to estimate the sentiment of the source lexeme in the specific
semantic domain.
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The third horizontal line in SP illustration marks the mean of the propagated sentiment
values over identified lexical subgraphs, Average Sentiment Potential (ASP) [27], represents
the average sentiment value of the seed lexeme over its semantic communities:

ASP(a) :=
m

∑
i=1

GSV(Gi
a) ·

∑
x∈Gi

a

w(x)

∑
x∈Ga

w(x)
, (7)

where m is the number of subgraph communities Gi
a identified in the seed lexeme graph

Ga, GSV(Gi
a) is the GSV value of the subgraph Gi

a, and w(x) is the weighted degree of the
node x in Ga.

The four communities identified in Figure 4 refer to different semantic domains of the
lexeme work. Each community is represented by a circle whose size represents its share in
the total network centrality, which in this case ranges from 28.3% to 19.5%. The vertical
placement and the colour of the community representation circle expresses the sentiment
value according to the scale shown on the right.

Note that the ODV assigned to the lexeme work is very positive, i.e., 0.9. The first
approximation obtained using the ConGraCNet method, namely ADV sentiment value
of lexeme work is lower than the ODV sentiment value, but still rather high, i.e., 0.78.
Interestingly, further syntactic-semantic network construction based on the usage of the
lexeme in expressed in the corpus and the related analysis, reveals a considerably lower
sentiment value related to work across all the identified senses.

The centrality measure used in the calculation of SP shown in Figure 4 is betweenness,
as originally proposed in [27]. In comparison, SP of the same lexeme computed using SLI
scores leads to more differentiated sentiment scores across different sense communities of
the lexeme, as shown in Figure 5 and Table 4.

When comparing the two sentiment potentials, various effects of the SLI measure can
be noticed when comparing the two sentiment potentials, from the resulting community
sizes reflecting the overall importance of the community lexemes, to vertical placements
and colours indicating the orientation and intensity of the communities’ sentiment score.

The community with lexemes associated around lexemes work, play, research, study,
for example, displays higher, more positive sentiment value and larger size, i.e., a more
prominent, in fact the primary sense of the source lexeme. At the same time, the community
containing lexemes dedication, commitment, determination, has been reduced in relative size
and displays lower sentiment value.

Figure 5. Sentiment potential (SP) of noun lexeme work propagated from SenticNet using SLI
centrality.
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Table 4. Sentiment potential (SP): GSV scores of lexical communities of noun lexeme work propagated
from SenticNet 6.

SenticNet 6 Work-n

Community Lexemes Betweenness GSV SLI GSV

1 life-n, school-n, home-n, family-n, love-n, property-n, business-n,
hospital-n, student-n, community-n, program-n, building-n 0.37 0.61

2
dedication-n, commitment-n, determination-n, passion-n,
perseverance-n, enthusiasm-n, patience-n, loyalty-n,
persistence-n, courage-n

0.47 0.33

3 work-n, play-n, research-n, study-n, project-n, patient-n,
development-n, analysis-n, science-n 0.76 0.88

4 effort-n, time-n, money-n, energy-n, resource-n, cost-n,
attention-n, people-n 0.16 0.07

ODV : 0.9 betweenness ADV : 0.78 SLI ADV : 0.65
betweenness ASP: 0.45 SLI ASP: 0.56

The community sentiment value is propagated from the available original sentiment
values of its lexeme nodes. As shown in Table 3, the most important nodes in the third
community according to SLI are of positive sentiment score, but of lower values (0.034 and
0.231), while the most positive lexemes from the community, that is nodes passion (with
the sentiment score of 1) and commitment (with the sentiment score of 0.704) are of lower
SLI importance. They hence contribute less to the community sentiment score, which is
consequently lowered from 0.47 to 0.33.

This effect of accentuating or flattening sentiment differentiation originates in the
propagation method of the sentiment value from the available values in the network. Since
the community of associated lexemes may contain lexemes with different sentiment values,
see Tables 3 and 4, the sentiment value, when propagated as an average of the values in
the neighbouring subnetwork, is often diluted or blurred by less important nodes in the
community. This issue is mitigated by using a centrality with a high polarization, which is
one of the main characteristics of the SLI measure.

3.3. Further Areas of Applications

Besides the linguistic syntactic-semantic applications, that are the main driving force
behind the conceptualization of this measure, there are other foreseeable applications
of SLI . These include, for example, the analysis of various types of network structures.
For instance, SLI can be introduced into graph analysis of vulnerability and identification
of bottlenecks in transportation networks [15]. Further applications can be considered
for biology structures where a cell, gene, or protein can be considered as a node, and the
connecting element as an edge [39], infectious disease spread analysis [40], information
network modelling, social networks [41], interaction between social agents such as the
influence spreading [42], the impact of cultural norms and legislation [43], etc. The appro-
priateness of the SLI measure is highlighted in graph analysis of node influence within
network structures that involve a weighted type of relation between different entities,
components, or agents, with strong topological coherence within a subgraph component.

4. Conclusions

In this paper, we propose a new centrality measure SLI that evaluates the intercon-
nectedness of nodes in a semi-local subgraph. The strong integration of a node within its
neighbourhood is reflected by the weighted degree of the node, the weighted degrees of
the nodes it is connected to, and the number of cycles it is contained in. The larger all of
these factors are, the better the coherence of the neighbouring subnetwork.
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The definition of the SLI measure was motivated by applications in lexical networks
and has proven useful in the NLP tasks of sense structure representation and sentiment
analysis. Further use of the SLI measure appears promising for other NLP tasks, such
as sense labeling, where it can help in identifying and classifying hypernym candidates.
Moreover, the use of SLI centrality is not limited to lexical networks and opens up studies
in various applications of FoF and complex networks in other research areas.
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