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Abstract: This paper describes a graph method for labeling word senses and identifying lexical
sentiment potential by integrating the corpus-based syntactic-semantic dependency graph layer,
lexical semantic and sentiment dictionaries. The method, implemented as ConGraCNet application
on different languages and corpora, projects a semantic function onto a particular syntactical de-
pendency layer and constructs a seed lexeme graph with collocates of high conceptual similarity.
The seed lexeme graph is clustered into subgraphs that reveal the polysemous semantic nature of
a lexeme in a corpus. The construction of the WordNet hypernym graph provides a set of synset
labels that generalize the senses for each lexical cluster. By integrating sentiment dictionaries, we
introduce graph propagation methods for sentiment analysis. Original dictionary sentiment values
are integrated into ConGraCNet lexical graph to compute sentiment values of node lexemes and
lexical clusters, and identify the sentiment potential of lexemes with respect to a corpus. The method
can be used to resolve sparseness of sentiment dictionaries and enrich the sentiment evaluation of
lexical structures in sentiment dictionaries by revealing the relative sentiment potential of polysemous
lexemes with respect to a specific corpus. The proposed approach has the potential to be used as a
complementary method to other NLP resources and tasks, including word disambiguation, domain
relatedness, sense structure, metaphoricity, as well as a cross- and intra-cultural discourse variations
of prototypical conceptualization patterns and knowledge representations.

Keywords: lexical graph analysis; corpus; knowledge representation and reasoning; affective
computing; sentiment analysis

1. Introduction

The expression of feelings and moods in language is one of the foundations of social
communication and interaction of personal and cultural values. Linguistic expressions
activate feeling as an emergent cognitive interpretation of the components of the utterance:
words and their syntactic organization. According to research in cognitive science [1]
and linguistics [2], the process of affective evaluation of a symbolic code is an important
component in emergent complex phenomena of creating a sense. Without recognizing,
integrating and appraising an affective value in the linguistically articulated conceptual
content, be it a rough grained positive vs. negative classification or a nuanced emotional
categorization, there is no real comprehension of the text. For humans, the process of expe-
riencing affective quality is evolutionary hardwired, sub-conscious trait that is activated
by social interaction. However, humans also have difficulties objectively assessing the
affective value of an utterance. On the other hand, for a sequence matching quantitative
system, a computer, this is an even more difficult task.

Nonetheless, in recent years there has been a surge of natural language processing
(NLP) techniques and resources that address affective and subjective phenomena in text
analysis. Although reductive, the resources are becoming more extensive and versatile
due to their quantitative nature. At the same time, graph theory, as a branch of discrete
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mathematics that studies the properties of graphs, has developed applications in fields as
diverse as, for instance, computer science, engineering, physics, sociology, biology, and
so on. Graph theory has also had a strong impact on computational linguistics, providing
representations of grammar formalism and lexical analysis, among other things. In our
linguistic study, graph theory has provided a particularly powerful and useful method for
modeling lexical phenomena with which we are concerned with.

This paper demonstrates the application of graph theory to the field of NLP resources
and the processing of lexical affective dimensions in sentiment analysis research, and
proves that it has the potential to push the quantitative nature of the research further in the
qualitative direction.

Sentiment analysis aims to evaluate generalised feeling that people get from cognitive
processing of an utterance without focusing on a specific class of emotions. It relies on a
simplified system of classifying and/or assigning a normalized range of values for a specific
affective dimension. The assignment of a value that can describe the feeling expressed in
a language utterance is at the core of the process of sentiment analysis. Sentiment can be
evaluated for words, concepts, multi-word phrases, sentences, paragraphs, or entire texts.
However, the basic component of sentiment analysis is a word or a lexeme. Lexemes are
symbolic representations of conceptual references to a class of things, psychological states
and sociocultural constructs, their relations, processes, and characteristics. Some lexemes
represent a concept that has a predominantly culturally associated positive feeling, such
as: joy, heart, flower, etc., while some lexemes represent concepts that are associated with
negative feelings, such as sorrow, death, war, etc.

The basis for conducting a sentiment analysis is sentiment dictionaries, which contain
information about the sentiment dimension expressed by words, phrases or concepts.
These dictionaries are created by annotating the lexical entries based on the psychological
evaluation of the words or by extending the already annotated dictionaries using various
NLP techniques and resources. The two main shortcomings of the dictionary approach
are (1) the lack of lexical entries and (2) problems in assigning sentiment values. The
first problem could be easily solved with some labeling campaigns, but the second is
a more difficult beast to struggle with, as it is burdened by the inherent subjectivity of
evaluating the sentiment of a text, lexical ambiguity, and the domain and culturally specific
word sense.

Nevertheless, NLP researchers have proposed general strategies for sentiment dic-
tionary enrichment using a two-step procedure: (1) sentiment seed collection and (2)
sentiment value propagation. In the first step, sentiment values of seed lexical structures
are manually annotated or ascribed from existing dictionaries. The second step includes the
propagation of sentiment values from the seeds to the remaining parts of the foundation
graph, whether it is an existing word, phrase or concept graph [3–7].

In this paper, we approach the above problems by using both NLP and graph theory to
develop graph methods for distinguishing word senses [8] and lexical sentiment potential
enrichment. Our approach is based on the graph propagation algorithm, which uses a
corpus-based syntactic dependency layer to compute a target sentiment value. Like other
sentiment enrichment systems, we start from a sentiment dictionary and map the existing
sentiment values to lexical nodes. Unlike standard bag-of-words abstraction, which lacks
the sequential organization of a text, or neural network (skip-gram) sequence statistical
analysis that does not distinguish the syntactic dependency categories, we use coordination
syntactic dependency relation between lexemes in a corpus to construct a seed lexical graph
and identify conceptual clusters.

This corpus-based graph method incorporates standard natural language processing
techniques: tokenization, lemmatization, part-of-speech and syntactic dependency tagging,
as well as the integration of an array of metadata about the lexical nodes from knowledge
databases and sentiment dictionaries. The linguistic structures are transformed into a
graph that can be used as a valuable resource for the detection of sense dynamics and the
representation of lexical sentiment components.
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The main contributions of this paper include:

• Graph method for assigning labels to semantically related lexical sense clusters of a
seed lexeme using a directed WordNet-based hypernym graph layer;

• Graph algorithm for extending dictionary coverage by assigning sentiment values to
the non-existent lexeme dictionary entries based on a corpus-specific coordination
dependency graph layer;

• Graph algorithm for reevaluating sentiment values from a dictionary based on a
corpus-specific coordination dependency graph layer;

• Graph metrics and representation of a sentiment distribution of a seed lexeme, called
sentiment potential, based on a clustering of semantically related lexemes within a
corpus-specific coordination dependency graph layer;

• Methodology for dynamic, transparent and corpus-specific sentiment value analysis
and model creation.

These contributions introduce solutions to the problems of creating sentiment dictio-
naries that feature word sense discrimination, do not suffer from sparsity and can represent
culturally specific sentiment values.

The paper is organized as follows. In Section 2, we present the method of assigning
labels to subgraphs in the lexical dependency graph using the hypernym relation. Section 3,
introduces the main contribution of the paper, namely the sentiment potential of lexemes.
The presented assignment of sentiment values to lexemes is evaluated in Section 4, while
the proposed methodology is discussed in Section 5. We conclude with Section 6, where
we also propose avenues for future research.

2. Labeling Lexical Graphs

As already mentioned, one of the main problems in the field of language processing
is related to lexical ambiguity and semantic change. The same word may have multiple
senses, or acquire new meanings, sometimes even semantically unrelated. For example,
the noun lexeme bass may refer to a musical instrument or a species of fish.

This ambiguity problem is obviously related to the assignment of the sentiment value
for a specific word, since each sense may have a different sentiment value. For this reason
we develop a method for lexical sentiment analysis with distinguishing lexical associations
for a seed word. This allows us to assign labels and compute the sentiment value for each
associated sense, i.e., to assert the dynamic sentiment potential of a lexeme.

2.1. ConGraCNet: Distinguishing Lexical Associations Using Syntactic Dependency Graph

The underlying graph-based computational method for the identifying lexical associa-
tions is implemented in the ConGraCNet application [8], developed as part of the EmoCNet
project [9], for tagged corpora creation, data retrieval from digital corpora, modeling, stor-
age, algorithmic processing, sentiment analysis, and visualization of semantic-syntactic
structures. The ConGraCNet application is designed to integrate data from a number
of NLP pipelines, lexical dictionaries and sentiment dictionaries. In this study, we used
as textual input the pipeline that collects syntactic dependency data from the morpho-
syntactically tagged corpora Sketch Engine API [10,11]. Specifically, we use a large English
Web ententen13_tt2_1 (ententen13) [12] corpus containing 19 giga words, high frequency
of lexical occurrence and various grammatical relation structures. The Sketch Engine API
was used to extract a summary of various syntactic dependencies co-occurrence data for
each lemma. The pipeline is shown in Figure 1.
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Figure 1. EmoCnet project ConGraCNet application methodology pipeline.

The tagged syntactic dependencies between lexemes in a corpus are used to construct
a multilayer network of lexemes. Each layer is constructed from lexemes collocated in a
syntactic dependency that can be harnessed for its semantic potential and function [13,14].
For example, object of the dependency yields a network of verbs and nouns representing
processes that can be performed on entities, while adjective modifier represents the attributes
of entities, etc. The association network layer constructed from collocated lexemes in the
and/or syntactic dependency, also called coordination construction, typically associates two
ontologically related entities, attributes and/or processes with an underlying tendency to
be assigned to a category. Therefore, the highest-ranked co-occurrences of the seed lexeme
in the coordinated construction [lexeme1 and|or lexeme2] are used to create and analyze a
graph of syntactically collocated lexemes that form a kind of conceptually associated class.
ConGraCNet coordination-type network construction consists of the following steps:

(1) Constructing a weighted undirected first-order graph (seed-friend) from the con-
stituent lexemes in the coordination syntactic-semantic construction;

(2) Constructing a weighted undirected second-order friend-of-a-friend (FoF) graph
from the collocated lexemes in the coordination syntactic-semantic construction;

(3) Identifying prominent nodes in the graph using a centrality detection algorithm;
(4) Centrality-based pruning of the graph;
(5) Identifying subgraph communities of collocated lexemes using a community detec-

tion algorithm.

The whole procedure with a number of parameters for control over graph construction,
pruning and cluster granularity is implemented in [8].

The second-degree coordination-based (pruned) graph is a representation of the con-
ceptually associated lexemes of a seed lexeme, while the community algorithm clustering
represents strongly associated senses. All lexical graphs in the research were constructed
using the n = 15 best-ranked coordination collocations in the first and second degree, and
clustering was performed using the Leiden algorithm [15] and the mvp partition type.

The clustered second degree coordination dependency lexical graph of the seed lexeme
pride with 143 nodes and 192 edges and 8 clusters is shown in Figure 2. Its pruned version
with 35 nodes and 84 edges in Figure 3 is obtained by removing the nodes with degree
less than 2. The pruning method allows for a more concise way of representation as well
as faster computation, although some marginal information is lost, the most important
semantic associations are preserved. The clustered lexical communities are listed in Table 1.
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Figure 2. Representation of a second order clustered coordination based lexical graph of a seed lexeme pride-n: 143 nodes,
192 edges, 9 clusters; parameters: corpus = ententen13, n = 15, clustering = leiden, partition = mvp.

Figure 3. Representation of a second order clustered coordination based lexical graph of a seed lexeme pride-n pruned with
degree ≥ 2: 35 nodes, 84 edges, 4 clusters; parameters: corpus = ententen13, n = 15, clustering = leiden, partition = mvp.

Table 1. Labels of communities in lexical dependency graph of lexeme pride-n calculated on ententen13 corpus.

Community Lexemes Labels

1 joy-n, accomplishment-n, satisfaction-n, pleasure-n, happiness-n, excitement-n,
fulfillment-n, success-n, enjoyment-n, comfort-n pleasure.n.01, activity.n.01

2 prejudice-n, envy-n, greed-n, hatred-n, hate-n, fear-n, ignorance-n, jealousy-n,
lust-n, gluttony-n

mortal_sin.n.01,
emotion.n.01

3 pride-n, arrogance-n, ego-n, vanity-n, selfishness-n, confidence-n, Pride-n,
stupidity-n pride.n.01, trait.n.01

4 dignity-n, honor-n, respect-n, honour-n, courage-n, award-n, privilege-n honor.n.02, award.n.02

The ConGraCNet methodology has shown perspective results, e.g., in the study of
linguistic expressions of emotions and the conceptual analysis of cultural framing [16–21].
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2.2. Labeling the Lexical Associations Using the Wordnet Hypernym Relation

Once the ConGraCNet algorithm yields the graph structure with subgraph communities
for a seed lexeme, it is possible to assert labels for each subgraph community. For instance,
the lexical community cat, dog, mouse could be labeled domestic animals, mammals, etc.

Labeling in this sense is a kind of generalization of community features using a more
abstract concept. In other words, this labeling task aims to predict the most appropriate
hypernym category for a subgraph of the lexical sense community.

The WordNet hypernym labeling method is based on constructing a hypernym graph
from the constituents of the lexical subgraph using WordNet synset and hypernym relations
in the following steps:

(1) Each lexical node in a subgraph community is mapped to a lemma with correspond-
ing WordNet synset;

(2) Each synset is queried for a WordNet hypernym synset, creating:
(lexeme)→ [has_a_synset]→ (synset)→ [has_a_hypernym]→ (hypernym) relation;

(3) The resulting directed weighted (lexeme) → (hypernym) graph is analysed with a
centrality measure;

(4) The most central nodes in the hypernym graph are selected to represent the label of
the subgraph community.

The example of the WordNet hypernym labeling procedure for the community sub-
graphs of the seed word pride-n computed on the large web ententen13 corpus is shown in
Table 1.

Each directed hypernym relation is uniformly weighted with a weight of 1. The rank-
ing of synset candidates for the most appropriate hypernym label of a coordination-based
lexical community is generated using the degree and the PageRank centrality measures. In-
tuitively, the degree measure yields the most connected nodes in the graph. The nodes with
the same degree are further ranked by their PageRank values, if necessary. The PageRank
values, on the other hand, indicate the nodes with higher association based on the directed
nature of the hypernym relation, thus providing a fine-tuning ranking for nodes with
similar degree values. The calculations are performed using the Python iGraph library [22].
Other centrality algorithms are also being developed aiming for a greater ranking granu-
larity and enhanced mapping of the coordination-based source nodes importance on the
hypernym target nodes.

One of the main advantages of the WordNet hypernym labeling graph algorithm is the
symbolic categorical assignment of lexical nodes to a class within a structured taxonomy.
This allows the semantic enrichment of the associated lexical communities obtained by the
bottom-up unsupervised graph classification method into a set of synsets with well-defined
and curated top-down knowledge relations.

The hypernym graph abstracts the categories of lexical communities with the knowl-
edge from the WordNet dictionary relative to the data provided by a corpus. This yields a
comparable corpus-based representation of lexical usage, with the same set of graph param-
eters. Table 2, for example, shows the labeling of communities based on the europarl7_en
English corpus of Euro Parliamentary discussions (europarl7).

Table 2. Labels of semantic communities in lexical dependency graph of lexeme pride-n calculated on
europarl7.

Community Lexemes Labels

1 pride-n, humility-n, arrogance-n, pleasure-n feeling.n.01, trait.n.01
2 joy-n, emotion-n, satisfaction-n, enthusiasm-n emotion.n.01, feeling.n.01
3 culture-n, responsibility-n, civilisation-n society.n.01, culture.n.01
4 dignity-n, honour-n dignity.n.01, pride.n.01
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In these examples, we can see that both corpora provide a set of lexical clusters that
abstract pride in the sense of an affective and emotional state feeling.n.01, in particular as a
feeling of self-esteem and personal worth pride.n.01, and satisfaction with achievements
pride.n.02. However, pride-n in the web corpus ententen13 is associated with the unfor-
givable sin that entails a total loss of grace, while the European Parliamentary corpus
abstracts community with the antonyms humility-n, arrogance-n as a distinguishing feature
of one’s personal nature, and provides more socially oriented labels that highlight an
extended social group with a distinct cultural and economic organization at a particular
time and place.

Another advantage of using WordNet is the ability to find corresponding hypernym
structures in many languages via the Open Multilingual WordNet library [23]. For example,
the results of a Croatian lexical concept ponos computed on the hrWac corpus [24] are given
in Table 3. For example. the same concept pride in the Croatian corpus hrwac22 associates
the ponos with the state of being honored, the state of being free and prosperous, and a
feeling of gratitude and appreciation.

Table 3. Labels of semantic communities in lexical dependency graph of lexeme ponos-n calculated on hrWac22 corpus.

Community Lexemes Labels

1 zadovoljstvo-n, radost-n, sreća-n, veselje-n, korist-n, uspjeh-n, mir-n,
ispunjenje-n, smijeh-n, ljubav-n, uzbud̄enje-n, zdravlje-n emotional_state.n.01, joy.n.01

2 dika-n, slava-n, dostojanstvo-n, čast-n, Ponos-n, hvala-n, poštenje-n,
ugled-n, sloboda-n, poštovanje-n honor.n.01, freedom.n.01

3 ponos-n, predrasuda-n, prkos-n, tuga-n, ego-n, žalost-n, bijes-n,
oholost-n, ljutnja-n sadness.n.01, unhappiness.n.01

4 zahvalnost-n, priznanje-n gratitude.n.01, feeling.n.01

In this way, the corpus-based graph structures highlight the usage-based and cultural
differences in the semantic processing of the same lexical concept. These features provide
a transparent and consistent approach for an intra- and cross-cultural analysis of the
associative semantic lexical potential for a given seed word.

As a drawback of the method, it should be noted that the lexical sparseness of the
WordNet hypernym relations hinders the full scope of the mapping. Nevertheless, the
structure of the coordination layer subgraphs can be compensated to some extent by the
association of more frequent noun lexemes, which provide a more conventional abstract
categorical label for an associated sense of a source lexeme.

In the next section we demonstrate the use of sentiment analysis resources to map and
assign sentiment value to the ConGraCNet lexical graph structures.

3. Assigning Sentiment Value in Lexical Graphs

Sentiment analysis aims to provide a simplified system for classifying of the expressed
feeling as well as the assigning a normalized range of values for a specific affective di-
mension. Sentiment can be evaluated for words, concepts, multi-word phrases, sentences,
paragraphs or whole texts. As mentioned earlier, one of the problems with lexical dictio-
naries is related to their sparseness and rather reductive nature.

The structure of the ConGraCNet lexical graph allows the assignment of sentiment
values to a single lexical item or the computation of sentiment values for missing lexemes or
whole lexical communities by propagating the values from an existing sentiment dictionary.

3.1. Sentiment Dictionaries

For assigning sentiment values to lexeme nodes and their corresponding subgraph
communities we rely on the existing sentiment dictionaries. Sentiment values are mapped
to a lexical node using sentiment dictionaries, which contain sentiment data for words
and concepts. Different dictionaries provide one or more sentiment dimensions, such as
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polarity, positive score, negative score, etc. In this paper, we show the mapping results for
three dictionaries: SenticNet, SentiWords and Senti WordNet.

One of the most extensive sentiment lexical dictionaries available is SenticNet6 [6,25].
Its commonsense knowledge base of 200 k lexical concepts is built by integrative top-down
and bottom-up learning over an ensemble of symbolic and sub-symbolic AI tools. The
upgrading of syntactic and logical features makes this approach very compatible with
the ConGraCNet approach. On the other hand, due to the number of semantic dimen-
sions, namely the ‘polarity_score’, ‘sensitivity’, ‘attitude’, ‘temper’, and ‘introspection’,
expressed in numerical values ranging from −1 to 1, we are able to calculate various
numeric values representing sentiment of CongraCNet lexical nodes and community sub-
graphs. Throughout this paper, we mainly use the SenticNet 6 sentiment dictionary for our
running examples.

SenticNet 6 was integrated into the ConGraCNet app using the Python library Sen-
ticNet 6 API [26] to retrieve sentiment dimensions and values. Of particular interest for
non-English language corpora is the integration of the multilingual feature of the Babel-
NetSentic module, which provides sentiment values for 40+ languages [27].

Senti WordNet [28] is another standard sentiment dictionary integrated into the
ConGraCNet application. It assigns sentiment values to WordNet synsets instead of words.
Each Senti WordNet synset has a positivity and a negativity value normalized between 0
and 1. Since the combined scores never exceed 1, it is possible to calculate the neutral value
by subtracting 1-(positive+negative score). This dictionary covers more than 150 k words,
with inherited synset ID, part of speech tags and gloss from the WordNet dictionary, making
it possible to extend the values to non-English WordNets. This dictionary maps a single
lemma to more than one synset, with potentially different sentiment values. For example,
the noun fight has positive 0 and negative 0 values for the synset glossed as ‘a boxing
or wrestling match’, but positive 0 and negative 0.125 values for synset ‘an aggressive
willingness to compete’. This structure that usage relies on the word sense disambiguation.
This top-down approach to word sense disambiguation and sentiment assignment of the
word related senses in the Senti WordNet dictionary complements our bottom-up graph
approach to computing the lexical potential of the associated lexical communities.

Another sentiment analysis dictionary, SentiWords [29–31] is a high coverage resource
containing about 155 k English words associated with a sentiment score ranging between
−1 and 1. The words in this resource are in the form lemma#PoS and are matched against
WordNet lists (which contain adjectives, nouns, verbs and adverbs). The scores are learned
from Senti WordNet and represent the computation of words’ prior polarities (i.e., the
polarity for non-disambiguated words) using Senti WordNet.

3.2. Calculating Sentiment Value of a Lexical Graph

This section explains graph procedures that can be used to mitigate the problems asso-
ciated with sparsity and subjectivity in sentiment analysis. In particular, it demonstrates
how to propagate the sentiment value of a lexeme based on a sentiment dictionary and
how to evaluate the sentiment value of a lexeme sense subgraph.

In some of the existing sentiment dictionaries, sentiment values are expressed in
quantitative dimensions, such as ‘PosScore’ or ‘NegScore’ in the Senti WordNet dictionary
or ‘polarity_value’, ‘attention_value’, and ‘sensitivity_value’ in the case of the SenticNet
6 dictionary. Our graph procedures refer to such numerical sentiment categories. For
assigning and assessing the sentiment value of words of interest, and their associated
lexical communities, we rely on ConGraCNet coordination dependency layer lexical graph
with subgraph communities representing associated senses.

In the case of non-existing lexical dictionary entries, we can propagate the word
sentiment value by computing the associated lexical graph sentiment value, this enriching
the dictionary coverage. Moreover, the existing sentiment values for original dictionary
entries can be reassessed using the same graph construction approach and calculating their
sentiment value.
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Given a lexical graph, we assign the sentiment value to a subgraph according to the
dictionary valence values of the node lexemes and the corresponding graph structure. Node
importance in the weighted undirected coordination dependency based ConGraCNet graph
can be extracted using various node measures, such as weighted degree, betweenness [32] or
PageRank [33]. For a chosen graph, a chosen sentiment dictionary and a sentiment category,
we define the Graph Sentiment Value (GSV) measure.

Given a graph structure G with the lexemes as nodes, their dependency relations as
edges, and a chosen centrality measure of node importance, let w(x) denote the measure of
a node x in the graph G. Then, given a sentiment dictionary D and a sentiment category
C, we extract the numerical sentiment values of the nodes in G, v(x), that appear in the
dictionary D. Let VD

G denote the set of nodes x ∈ G for which v(x) is known.
The graph sentiment value of graph G is defined for a nonempty set VD

G as follows:

GSV(G) :=

∑
x∈VD

G

v(x) · w(x)

∑
x∈VD

G

w(x)
. (1)

For an example of GSV values obtained from SenticNet 6 dictionary ‘polarity_value’
for a ConGraCNet subgraph see Table 4. The GSV values shown were obtained using
weighted degree, betweeenness and PageRank. The subgraph node lexemes and the corre-
sponding values of the various graph centrality measures are given along with SenticNet 6
‘polarity_values’. Note that the lexemes with the highest values of the centrality measure
have thegreatest impact on the GSV computed with respect to that centrality measure. For
example, the lexeme leader is the only node in the subgraph with a negative ‘polarity_value’,
while the other values from the dictionary are positive or do not appear in the dictionary.
Interestingly, many of the listed ‘polarity_values’ are very high. In terms of graph prop-
erties, betweenness is the measure that has the highest relative differences between the
values of the node measures among those listed. The highest betweenness values in the
subgraph correspond to the lexeme nodes Member and member. These values are more
than 11 times greater than the nearest betweenness value. At the same time, the majority
of the nodes have the betweenness value of 0. This is not the case for the other measures
presented. Consequently, the GSV value obtained with betweenness is strongly influenced
by the negative polarity value of the lexeme leader, and only slightly corrected by the
positive values of the remaining nodes with nonzero betweenness values. Therefore, the
GSV value obtained with betweenness is negative, while the GSV values calculated with
other centrality measures are positive. The lexeme leader does not have much impact on
the propagation of GSV with respect to the measures weighted degree and PageRank.

For another example see Table 5. In this subgraph, the most influential node for the
betweenness GSV value is the lexeme lecturer which has a fairly neutral sentiment value.
The rest of the available lexeme nodes ODV values are all positive. Since the sentiment
values of the weighted degree and PageRank are more evenly distributed, the obtained
weighted degree GSV and PageRank GSV values are significantly more positive due to the
influence of the strongly positive lexeme nodes.

In general, the number of node lexemes in a graph that do not have a sentiment value
in a dictionary varies. The more values.

As the above examples show, the choice of the centrality measure is of great importance
for the computation of the graph GSV. Since different measures reflect specific graph
properties, the different obtained sentiment assessments of the lexical graph can be used
according to a specific lexical analysis.
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Table 4. GSV of community 2 of lexical dependency graph of lexeme student-n calculated with
SenticNet 6 polarity_value on ententen13 corpus.

SenticNet 6 Student-n Community 2

Lexeme Weighted Degree Betweenness PageRank ODV

Member-n 101.01 91.55 0.0653 nan
member-n 99.14 86.71 0.0653 nan
leader-n 22.96 7.81 0.0171 −0.90
friend-n 32.97 0.58 0.0209 0.298
supporter-n 20.84 0.25 0.0167 0.299
volunteer-n 24.55 0 0.0167 0.916
guest-n 15.96 0 0.0126 nan
officer-n 14.94 0 0.0126 0.9
employee-n 14.80 0 0.0126 0.917
partner-n 14.08 0 0.0126 0.45

GSV 0.3530 −0.7846 0.3636

Table 5. GSV of community 3 of lexical dependency graph of lexeme professor-n calculated with
SenticNet 6 polarity_value on ententen13 corpus.

SenticNet 6 Professor-n Community 3

Lexeme Weighted Degree Betweenness PageRank ODV

lecturer-n 52.78 69.84 0.0593 0.03
writer-n 36.28 12.96 0.0326 0.883
author-n 30.08 10.66 0.0275 nan
faculty-n 21.80 6.16 0.0210 0.219
clinician-n 13.80 0.54 0.0157 0.823
mentor-n 12.45 0.54 0.0157 0.823
instructor-n 14.11 0 0.0156 nan
speaker-n 15.46 0 0.0159 nan

GSV 0.4376 0.1752 0.4227

3.3. Calculating Sentiment Value of a Lexeme

It is typically the case that not all lexemes that appear in the ConGraCNet graph are
labeled with sentiment values in a sentiment dictionary. Certainly, the more lexical nodes
are found in the dictionary, the better the evaluation of the assigned sentiment values of the
lexical graph. This leads to the idea of extending the coverage of the sentiment dictionary
by sentiment value propagation.

In this dictionary enrichment task, the ConGraCNet coordination dependency graph
layer identifies candidates without original sentiment values while providing a structure
for sentiment value assignment.

Based on the sentiment values of the lexeme entries in the sentiment dictionary,
called Original Dictionary Values (ODV), we propagate the sentiment values to lexical nodes
without ODV thus extending the coverage of the dictionary. We call the resulting sentiment
value for lexeme a the Assigned Dictionary Value (ADV) of lexeme a.

Given a sentiment dictionary D and its sentiment dimension C, the assigned dictionary
value ADV of the lexeme node a, which does not occur in D, is computed from the corpus-
based coordination dependency lexical FoFa graph and the available sentiment values
for its lexeme nodes. We extract the available valence values in category C from D for
the nodes of FoFa, denoted by v(x). Let VD

a be the set of nodes x ∈ FoFa for which v(x)
appears in D.



Mathematics 2021, 9, 1449 11 of 22

The assigned valence value of node a in category C of dictionary D, denoted by
ADV(a), is defined as follows for a nonempty set VD

a :

ADV(a) :=

∑
x∈VD

a

v(x) · b(x)

∑
x∈VD

a

b(x)
, (2)

where b(x) is the betweenness measure of the node x in the FoFa graph and v(x) is the
valency value of lexeme x in category C of D.

Note that ADV(a), as defined in (2), is actually GSV(FoFa) with betweenness as the
centrality measure. The chosen measure of ADV propagation is betweenness because it
quantifies the role of the node as a bridge along the shortest path between two other nodes.
It provides a way to determine the impact of a node on the connectivity of the graph. Given
the FoF graph structure, the high values of the betweenness measure of the lexeme nodes in
the ConGraCNet lexical graphs suggest that these node lexemes best represent the primary
or dominant lexeme senses.

Some examples of lexemes and their computed ADV values are shown in Table 6.
The absolute differences between the obtained ADV values and the extracted ODV values
are significant in some cases. For some more examples of obtained ADV values and the
comparison with the ODV values see Figure 8 in Section 4 where the subjective assessment
is presented. For a discussion on the lexical implications of the question of differences
between ODV and ADV values see Section 5.

Table 6. Examples of ODV and ADV calculated with SenticNet 6 polarity_value on ententen13
corpus.

Lexeme SenticNet 6 ODV SenticNet 6 ADV |ODV − ADV |
changemaker-n −0.93 0.128 1.058
researcher-n −0.83 0.06 0.89
continuance-n −0.91 −0.214 0.696
hint-n 0.982 0.45 0.532
impatience-n −0.97 −0.535 0.435
status-n −0.2 0.23 0.43
desperation-n −1 −0.647 0.353
hate-n −0.28 −0.468 0.188
love-n 0.83 0.673 0.157
vacation-n 0.442 0.411 0.031

3.4. Sentiment Potential: Graph Propagation Algorithm for Lexeme Sentiment Value

ConGraCNet lexical graph represents an information structure that can be enriched
with sentiment values. Orthogonally, this graph can provide a basis for enriching the
sentiment representation which addresses the reductive nature of quantifying lexically
expressed feeling. We present a graph propagation algorithm that leads to an enriched,
more complex sentiment representation for word sentiment, called Sentiment Potential (SP).

For a chosen seed lexeme a, the SP propagation algorithm takes the following param-
eters: (1) a sentiment dictionary D and its numeric dictionary category C, (2) ConGraCNet
graph parameters including the size of the computed FoF seed lexeme graph, the clustering
algorithm, the centrality algorithm, and the choice of corpus.

For the chosen parameters, the SP propagation algorithm returns the SP(a) by per-
forming the following steps:

(1) Computing the ConGraCNet lexical graph Ga for the seed lexeme a;
(2) Mapping the ODV values for Ga lexeme nodes for which the sentiment values appear

in category C in the sentiment dictionary D;
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(3) Computing the ADV values for Ga lexeme nodes for which the sentiment values in
category C do not appear in D;

(4) Assigning labels for identified lexical subgraphs Gi
a of Ga;

(5) Computing GSV sentiment values for identified lexical subgraphs Gi
a of Ga repre-

senting the associated lexical senses of the seed lexeme a;
(6) Calculating the average SP for the lexeme a.
(7) Visual representation of SP(a).

For a chosen lexeme a the ConGraCNet method provides the associated lexical graph
Ga. The available sentiment values for the lexical nodes of Ga can be extracted from the
chosen dictionary D. For the remaining lexical nodes of the Ga graph, ADV values are
assigned, as defined in Section 3.3. These first steps of the SP algorithm, (1)–(3), yield the
enriched lexical graph of lexeme nodes, each with its associated sentiment value.

Furthermore, in step (1), the subgraph communities of the graph are identified by the
ConGraCNet method. Then in step (4), for each subgraph Gi

a of Ga, the abstracted category
labels are computed using the WordNet hypernym graph, as presented in Section 2.

Next, in step (5), for each subgraph Gi
a of Ga, its sentiment value GSV(Gi

a) is computed
using the weighted degree centrality measure, as defined in Section 3.2. Table 7 shows an
example of a lexical subgraph, along with the ADV values assigned to the node lexemes
that do not appear in the dictionary. The obtained GSV value of the subgraph community
of the example lexeme fight is positive, since the lexical nodes with the highest rank are
very positive, while the negative nodes have lower weigthed degree values. The remaining
subgraph communities of the lexeme fight and the GSV values for all of the subgraphs are
shown in Table 8.

Table 7. Propagation of GSV of community 1 of lexical dependency graph of lexeme fight-n calculated
with SenticNet 6 polarity_value on ententen13 corpus.

SenticNet 6 Fight-n Community 1

Lexeme Weighted Degree ODV ADV

fight-n 90.50 0.9
response-n 32.55 −0.20
reaction-n 26.42 −0.86
flight-n 15.29 nan 0.226
action-n 13.69 nan −0.146
behavior-n 11.98 −0.79
collision-n 6.53 −0.83
fighter-n 5.86 0.343
mode-n 5.52 0.835
stand-n 5.47 nan 0.093

GSV 0.23

The obtained GSV sentiment values of all subgraphs of the lexical graph Ga provide
a more detailed sentiment score for the lexeme a, where each of the GSV(Gi

a) values
corresponds to one of the semantic domains related to the senses of the seed lexeme a. This
spectre of sentiment values together with the corresponding subgraph communities and
their labels, forms the sentiment potential of the seed word.

Finally, in step (6), the average representative sentiment value for the seed lexeme is
computed. The Average Sentiment Potential (ASP) represents the average sentiment value
of the seed lexeme over its semantic communities identified by the ConGraCNet method.
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It is computed as the mean of the propagated sentiment values of the identified lexical
subgraphs as follows:

ASP(a) :=
m

∑
i=1

GSV(Gi
a) ·

∑
x∈Gi

a

w(x)

∑
x∈Ga

w(x)
, (3)

where m is the number of subgraph communities Gi
a identified in the seed lexeme graph

Ga, GSV(Gi
a) is the GSV value of the subgraph Gi

a, and w(x) is the weighted degree of the
node x in Ga.

For example, the lexeme fight has ASP −0.0452, which is an average sentiment value
for this lexeme propagated using ententen13 corpus. Note that the corresponding ODV
value is a strongly positive value of 0.9. The assigned ADV value is also positive, but
significantly lower, due to the influence of the sentiment values of the associated nodes in
the corpus-based lexical dependency graph layer.

As shown above, the propagation of the sentiment potential leads to a semantic
description of the selected lexeme and an enriched representation of its sentiment value in
the corpus-specific data.

As the results for the running example of the lexeme fight, presented in Table 8 show,
the sentiment value of the word fight is positive when associated with collocating lexemes
such as response, action, reaction, but negative when associated with collocating lexemes like
misunderstanding, quarrel, disagreement. However, in the collocation subgraph containing the
lexemes battle, conflict, war, victory, it is more neutral due to the mixed sentiment polarity of
its community members.

The list of GSV values obtained represents multifaceted sentiment values of the seed
lexeme specifically associated with each associated semantic community. As shown above,
a lexical concept can convey very different sentiments in its different senses.

Table 8. Sentiment potential (SP): Labels and propagated GSV of lexical communities for seed lexeme fight-n calculated
with SenticNet 6 polarity_value on ententen13 corpus.

SenticNet 6 Fight-n, ODV 0.9, ADV 0.2619

Community Lexemes Labels GSV

1 fight-n, flight-n, response-n, collision-n,fighter-n, mode-n, manner.n.01, 0.23
stand-n, reaction-n, action-n, behavior-n support.n.10

2 argument-n, quarrel-n, disagreement-n, debate-n, dispute-n, dispute.n.01, −0.55
dissension-n, misunderstanding-n, contention-n disagreement.n.03

3 battle-n, struggle-n, conflict-n, war-n, victory-n, strife-n conflict.n.01, 0.02
military_action.n.01

4 chase-n, brawl-n, feud-n, gunfight-n fight.n.02, pursuit.n.01 −0.026

ASP −0.0452

3.4.1. Visual Representation of Sentiment Potential

The lexical sentiment distribution contained in the sentiment potential is visualized
using a graphical representation shown in Figure 4.

Each lexical community is marked as a circle of the corresponding size, calculated
using the relative weighted degree proportion in the overall lexical dependency graph of
the seed lexeme. The percentage and associated hypernym labels are attached to each
community circle. The vertical placement of the community circles and the associated
colors reflect the numerical sentiment value of the community, normalized in the range
[−1, 1]. The lexical communities with negative GSV are positioned lower and darker,
with black color representing the −1 value, and vice versa, the positive communities are
positioned higher and lighter, with yellow color representing the 1 value. The horizontal
lines correspond to the original dictionary value ODV, the assigned dictionary value
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ADV and the assigned sentiment potential ASP values obtained by dictionary mapping,
computing the sentiment values of the associated lexemes, and the average sentiment value
of their lexical clusters, respectively.

Figure 4. Sentiment potential (SP) of lexeme fight-n calculated with SenticNet 6 polarity-value; propagated on pruned graph
clusters of 15 best ranked collocates in the first degree and 15 collocates in the second degree within ententen13 corpus.

3.5. Analyzing Sentiment Dynamics

In general, the obtained SP of a lexeme a is associated with some chosen parameters.
By changing a parameter, e.g., choosing a different sentiment dictionary or changing a
corpus, the comparison of the different SP values can give an insight into the dynamic
sentiment potential of the chosen lexeme relative to the specific corpora in synchronic and
diachronic dimensions.

For example, the SP values of the lexeme fight obtained for some other SenticNet 6
dimensions and the SentiWords dictionary are shown in Table 9, while the visualization of
the SP values of the lexeme fight obtained using different corpora, English Plenary sessions
of the EuroParliament (europarl_plenary) and hrwac22, are shown in Figures 5 and 6.

Table 9. Sentiment potential (SP): Propagated SenticNet 6 dimensions: temper, attitude, sensitivity, and SentiWords GSV
of lexical communities for seed lexeme fight-n calculated on ententen13 corpus.

SP Fight-n

Community Labels SenticNet 6 SenticNet 6 SenticNet 6 SentiWords
‘Temper’ ‘Attitude’ ‘Sensitivity’

ODV −0.0109 0.3891 −0.4184 −0.41836

1 manner.n.01, support.n.10 −0.021 0.067 0.2287 0.0426
2 dispute.n.01, disagreement.n.03 −0.057 −0.103 −0.3591 −0.3102
3 conflict.n.01, military_action.n.01 0 0.047 0.1066 −0.2365
4 fight.n.02, pursuit.n.01 −0.149 −0.343 0.1326 −0.0449

ASP −0.0367 −0.0109 0.0468 −0.0992
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Figure 5. Sentiment potential (SP) of lexeme fight-n calculated with SenticNet 6 polarity-value; propagated on pruned graph
clusters of 15 best ranked collocates in the first degree and 15 collocates in the second degree within europarl_plenary
corpus.

Figure 6. Sentiment potential (SP) of lexeme borba (eng. fight-n) calculated with SenticNet 6 polarity-value; propagated on
pruned graph clusters of 15 best ranked collocates in the first degree and 15 collocates in the second degree within hrwac22
corpus.

The resulting ASP value of the lexeme fight in the europarl_plenary corpus is signifi-
cantly more positive than that obtained in the general ententen13 corpus. The obtained
labels for lexical clusters in the europarl_plenary indicate a domain specific political con-
ceptualization of fight as a concept with direction describing how something should be done
or managed.

Moreover, with different language corpora, a cross-language comparison of sentiment
representations for the same seed concept can be achieved. In this way, the proposed senti-
ment potential provides the method for multilingual and cross-cultural linguistic studies.
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4. Evaluation

Representing word sentiment with numerical values, or even classifying sentiment as
positive, neutral or negative is not a straightforward task. In fact, different sentiment values
have been assigned to the same lexeme in different sentiment dictionaries. For example,
the lexeme cream has the SentiWords polarity score of 0.4479, the SenticNet 6 sentiment
polarity value of −0.95, and a neutral valence in the Senti WordNet sentiment dictionary.

The criteria by which these values were assigned are not always clear and are nec-
essarily subjective. What should be less subjective is the relative difference in sentiment
value between words with similar senses and between closely related words in a chosen
sentiment dictionary. This is not always the case. For example, the Senti WordNet senti-
ment dictionary marks the lexeme researcher as positive, while research is neither positive
nor negative.

In other sentiment dictionaries, their sentiment values differ as well. In SentiWords,
researcher has the positive ‘polarity_score’ of 0. 1756 and the lexeme research has a neutral
‘polarity_score’ 0. In SenticNet 6 the ‘polarity_value’ of the lexeme researcher has a quite
negative value of−0.83, while the lexeme research has the opposite ‘polarity_value’ of 0.883.
For comparison, our methodology yields an ADV value of 0.0621 for the lexeme researcher
and ADV value of 0.7587 for lexeme research.

Although it is difficult to imagine an objective evaluation of sentiment values, we
attempted to measure the subjective evaluation of sentiment values from a dictionary in
two separate surveys. Survey responses were anonymized. The surveys were conducted
anonymously among elementary school and university students, both male and female.

The first survey tested subjective ratings of sentiment polarity scores from the Sentic-
Net 6 dictionary for approximately 30 selected noun lexemes. The selected lexemes had
different sentiment values, ranging from strongly negative to neutral to strongly positive.
A group of 27 subjects were first presented with word examples and their semantic values
to familiarize themselves with the word sentiment. In the survey, the original sentiment
dictionary value was presented for each lexeme, e.g., chocolate, 0.003. Subjects were asked
to indicate their personal perception of the presented sentiment value on a scale of 1 to 5,
where 1 marked strong disagreement and 5 strong agreement with the presented value.

The results of the evaluation are shown in Figure 7. In addition, Figure 7 shows
examples of lexeme ratings with divergent results. For example, when rating the lexeme
chocolate the vast majority of subjects had an opinion, either agreeing or disagreeing,
whereas for the lexeme hunger opinions were not as clear. For the lexeme happiness the vast
majority of subjects strongly agreed with the polarity value presented.

Overall Survey Analysis chocolate, 0.003 hunger, −0.38 happiness, 0.9

Arithmetic mean 3.39 Arithmetic mean 2.93 Arithmetic mean 3.19 Arithmetic mean 4.71

Standard deviation 1.24 Standard deviation 1.41 Standard deviation 1.3 Standard deviation 0.81

Figure 7. Survey Analysis on SenticNet 6 polarity-value ODV evaluation.
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The obtained results clearly show that the evaluation and sentiment assessment is
highly subjective. We suspect that the range of results would be similar for another
sentiment dictionary. This volatile assessment is difficult to capture accurately due to the
polysemous nature of the words.

In addition, we surveyed a group of 66 subjects who evaluated the original SenticNet
6 against the assigned dictionary ‘polarity_value’ obtained by our methodology on sample
of lexemes. The criterion for selecting the survey lexemes was the indication of a noticeable
difference in sentiment value between the original (ODV) and the computed numerical
value (ADV). The absolute difference between the corresponding ODV and ADV values
ranged from 0.21 to 0.92, with an average of 0.65. In some cases, the polarity_values of the
presented lexemes had opposite signs, i.e., some lexemes have a positive valence calculated
by our methodology and a negative valence calculated by the SenticNet 6 dictionary, or
vice versa. For each of the selected lexemes both ODV and ADV numerical values were
presented for assessment. Subjects were asked to select which of the presented values was
closest to their own perception. The numerical values were not labeled, and their order
was mixed, so subjects were unable to identify the origin of the values.

The overall results on lexeme evaluations are shown in Figure 8. Overall, for a set
of 23 lexemes for which both ‘polarity_values’ were given and anonymized in the sense
that the ODV and ADV labels were not visible, 76% of subjects chose the ADV over the
ODV value. Figure 8 on the right also shows the results on the ratings of the example
lexemes, from a large majority for ADV values, to no clear majority to a majority for ODV
values. The cases with the large majority of ADV preference may indicate an error in
dictionary input, antonymy, or a lexeme with clear polysemous nature. The results may
also be influenced by the lack of POS labeling in the SenticNet 6 sentiment dictionary. For
a discussion, see Section 5.

Overall Survey Analysis Lexeme Survey Analysis

Figure 8. Survey Analysis on SenticNet 6 polarity_value ODV vs. ADV on example lexemes evaluation.

5. Discussion

As shown in the previous sections, sentiment analysis is a complex area of linguistic
research. In addition to the psychological subjectivity inherent in emotional phenomena, it
deals with the ambiguity and polysemous nature of the symbolic code, and with reductive
attempts to assign the normalized token count to a dimension of the emotion invoked
by an utterance. However, the cognitive structure of linguistic-syntactic dependencies
revealed in a corpora gives us the opportunity to develop a more consistent and transparent
domain-dependent enrichment of symbolic tokens with numerical sentiment values [34].

Instead of considering a text as a bundle of words, or only superficially considering
the structure of syntactic information, the ConGraCNet graph machine learning methodol-
ogy uses a corpus-based syntactic dependency graph layer to learn the domain-specific
cognitive structures that can be more consistently enriched with sentiment values. The co-
ordination dependency lexical graph layer reveals the commonsense associative structure
of a single lexical node, which enables more transparent and human-like assignment of
a normalized sentiment value and representation of its polysemous sentiment potential
within a domain of texts.
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The polysemous nature of the lexeme in a corpus is identified using a clustering
algorithm of a seed lexeme. The hypernym graph label assignment described in Section 2
provides labels for each of these subgraph communities. The assigned labels emerge as the
most central nodes in the hypernym graph obtained using WordNet hypernym and synset
relations. Among the different implemented approaches to labeling data in ConGraCNet,
we used a dictionary-based approach for assigning labels to a subgraph community using
WordNet synsets hypernym relations. The other approaches could involve other knowledge
databases, such as ConceptNet.io [35], and DBpedia, or a combination with corpus-based
is_a syntactic dependency methods.

Particularly important for building sentiment analysis resources, this graph method
can be used to check the consistency of the initial sentiment dictionary values to identify,
reassess and possibly reassign some values with respect to the associated lexical clusters.
In our research, we created a blueprint of the procedure on a small sample of SenticNet 6
dictionary values, which includes (1) reassignment of sentiment values for each node, (2)
comparison of ODV with ADV, (3) ranking of nodes with largest difference, (4) assessment
of sentiment values by human subjects. In our future work, we will incorporate this iterative
process with the goal of generating representative and consistent sentiment dictionaries
from a set of sparse sentiment dictionary entries, reassigning values in accordance with
human evaluation, or evaluating a new sentiment dimension.

Of course, the structural dependency of the syntactic graph on a specific corpus should
be taken into account. The larger the corpus, the more generalized, robust and rich the
semantic relations represented in the associative layer will be. In general, the (re)assignment
of sentiment dictionary is more representative if it is built on a larger corpus. However, if
the sentiment values in a word dictionary are (re)evaluated reasonably consistently, the
corpus can be considered as the dependent variable. The ConGraCNet procedure can then
be used to reveal the cultural, domain specific, stylistic or idiomatic variations of sentiment
potential, as is described in Section 3.

Moreover, the sentiment potential representation SP has the ability to enrich lexical
semantics [36] by adding a dynamic and polysemous dimensions of sentiment values that,
to our knowledge, are not yet part of the existing semantic research. For instance, by using
time-stamped data, one can measure not only diachronic semantic change at the level of
lexical relations, but also the underlying salience of the sentiment potential that occurs
as a result of this change. A somewhat vivid example of this diachronic change is the
lexeme corona, which has a rather positive sense potential ASP 0.246, with ODV 0.27 using
a SentiNet 6 dictionary and the WordNet hypernym labels related to beer, aureole and
landmarks. However, the recent COVID-19 crisis has imparted new layer to the sentiment
potential of the lexeme corona. Some recent corpora, like Timestamped web corpus of
English 2014–2020 [37], identify this different sentiment potential of the lexeme corona with
ASP 0.08. When compared to the previous dominant trends, there appears to be a distinct
lexical cluster labeled as influenza and contagious disease with graph sentiment value GSV
−0.373 comprising 16 percent of the seed lexeme corona-n graph structure of 50 best ranked
collocates in the first degree and 5 in the second degree. This type of analysis opens up a
whole new dimension in the semasiological change research.

Another interesting lexical semantics feature is the presence of antonymous lexemes
and lexical communities within a seed lexeme graph, as illustrated in the seed graph of
the lexeme pride. Pride is associated with pleasure, but also with mortal sin. It arouses
positive sentiments labeled as pleasure, such as joy, happiness, but also negative ones,
such as greed, envy, jealousy, labeled as mortal sin. This phenomenon is part of embodied
cognitive structures that have a long history of research [38,39], but sentiment potential and
lexical clustering representation can add new data to a somewhat rigid one-dimensional
conceptual view of antonymy phenomena. One of our future research tasks will be to
further investigate the sentiment-enriched graph representation to find domain specific
lexemes and lexical structures with antonymous features.
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From the data processing perspective, the method requires that the corpus be tagged
with grammatical and syntactic features in order to construct a coordination network.
This process requires the extensive use of NLP morpho-syntactic tagging and a database
to store and extract the occurrence of lexical nodes and the co-occurrence of the nodes.
However, resulting coordination layer can then be used to identify conceptual associations
between nouns as entities, adjectives as attributes of entities, verbs as processes and
adverbs as attributes of processes. Other parts of speech are necessarily dependent on
these grammatical categories and therefore have no inherent prototypical sentiment. For
instance, it would be odd to assign a definite sentiment value to a particle a, the, logical
connectors and, or, or a pronoun you, etc., since they acquire their sentiment values in
syntactic-semantic constructions.

After constructing a syntactic dependency network embedding, the ConGraCNet ap-
proach to lexical sentiment analysis is actually language agnostic. Equipped with a relevant
sentiment dictionary with enough entries to boot-start graph propagation procedure, the
method can be applied to a lexical coordination graph of any language.

On this topic, it is important to mention the morpho-syntactic format of the sentiment
dictionaries. The two out of three sentiment dictionaries used here, SentiWords and Sen-
tiWordNet have the Part of Speech (POS) tags. POS grammatical metadata gives a more
accurate mapping of the ODV to a lexical node. SenticNet, due to the nature of symbolic
data extraction, does not provide the POS tags, which can result in a somewhat overlapping
mapping of the same sentiment value to an orthographically identical lexeme but grammat-
ically completely different category, as in the case of the lexeme fight, which symbolically
can be both noun fight-n and verb fight-v. In addition to the different semantic subgraphs
and corresponding labels, the average sentiment potential value of these lexemes is also
different, namely, ASP(fight-v) = 0.16 and ASP(fight-n) = −0.05, see Figures 4 and 9. In
this case, the calculation of ADV can used to asses the adequacy and consistency of ODV.

Figure 9. Sentiment potential (SP) of lexeme fight-v calculated with SenticNet 6 polarity-value; propagated on pruned graph
clusters of 15 best ranked collocates in the first degree and 15 collocates in the second degree within ententen13 corpus.

The computation of the values depends on the choice of the sentiment dictionary,
while the assignment of the new values and re-computation of the old ones additionally
depends on the choice of the parameters of the graph-based ConGraCNet methodology,
such as the size of the computed seed graph, the clustering and centrality algorithms, and
the choice of the corpus.

This syntactic dependency lexical approach can be useful for a number of downstream
applications dealing with sentiment analysis of larger linguistic structures, such as con-
structions, phrases, sentences, texts. The ADV values assigned to the lexemes and their
GSV values together with their abstracted labels can be used as components for contextual
sentiment text summary or dynamic compositional sentiment analysis [40].
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6. Conclusions and Future Work

The paper addresses the problems of data integration, processing and enrichment in the
context of the graph method used for labeling lexical clusters of a seed lexeme and identifying
its sentiment potential using the syntactic dependency layer of a morpho-syntactically tagged
corpus, implemented in the ConGraCNet application. According to the processing procedure,
after the construction of the coordination graph layer for a seed word and its lexical clusters,
we first implement the cluster labeling algorithm. This provides the conceptual abstraction
for semantically related lexical communities of a seed lexeme. Labels for each community
are propagated by constructing a WordNet hypernym graph from the clustered lexemes in a
coordination graph layer and selected based on a set of centrality measures. The candidate
labels abstract the central theme of a particular cluster and provide a way to distinguish it from
other clusters in an efficient manner.

Although the results of WordNet labeling are promising, in our future work we plan to
integrate other knowledge databases with similar semantic relations, such as Conceptnet is_a,
and compare the results with corpus-based word is_a category and category is_a word syntactic
dependencies.

The main contribution of the paper is related to the description of the graph algorithms
that can be used to calculate new lexical sentiment values and extend the range of sentiment
dictionaries that currently suffer from sparseness and lack of culture-specific sentiment values;
to re-evaluate existing sentiment values from a sentiment dictionary based on a corpus-specific
coordination dependency graph layer; to introduce polysemous sentiment graph metrics and
distribution of a seed lexeme, called sentiment potential, with description of the sentiment
potential algorithm, a graph procedure for mapping, identification and reassignment of the
sentiment values from a number of sentiment dictionaries.

Starting from SenticNet, SentiWords, SentiWordsNet dictionary based sentiment dimen-
sions and values, associated to lexemes in a coordination graph layer, we have demonstrated
the efficiency of the graph algorithm for assigning the sentiment values to the lexical sense
communities, to missing lexemes or for reassignment of the sentiment values based on a specific
corpus. This methodology for dynamic, transparent and corpus-specific sentiment value analy-
sis and model creation allows us to create sentiment lexical dictionaries for various languages
and specific corpora.

We performed an evaluation of the reliability of the sentiment values on a sample of
30 lexemes, as well as the subjective evaluation of the original dictionary values vs. graph
assigned values on a set of lexemes with slightly larger difference via questionnaire on 66
subjects. The distribution of ODV evaluation have shown relative agreement with the original
values. Subjective ratings of the appropriateness of the ADV were relatively high with 76% of
subjects choosing the ADV value over the ODV value. These promising results motivate us
to further experiment further with the corpus-based graph algorithm to extend the dictionary
coverage by assigning a sentiment value to non-existing lexeme dictionary deal with. In our
future work we will implement the algorithms to develop dense lexical sentiment dictionaries
and sentiment potential models calculated from various large corpora of major languages that
could be used in standard procedures for sentiment analysis. The other line of applications will
address sentiment dictionary consistency analysis.

Our future work will also extend the syntactically based analysis to a other syntactic
dependency layers to create sentiment potential for various multi-word expressions.

In general, the proposed approach has the potential to be used as a complementary
method to other NLP contemporary resources for the enrichment of various semantic tasks
including word disambiguation, domain relatedness, sense structure, synonymy, antonymy
and metaphoricity, as well as establish a cross-and intra-cultural discourse variations of
prototypical conceptualization patterns and knowledge representations.
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i Zagrebačka slavistička škola—Hrvatski Seminar za Strane Slaviste: Zagreb, Croatia, 2020; pp. 100–120.

17. Perak, B.; Ban Kirigin, T. Corpus-Based Syntactic-Semantic Graph Analysis: Semantic Domains of the Concept Feeling. Raspr.
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39. Čulig Suknaić, J. Antonimija Kao Pojmovna Kategorija Značenjske Suprotnosti u Engleskome i Hrvatskome Jeziku. Ph.D. Thesis,

Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia, 2020.
40. Kim, T.; Choi, J.; Edmiston, D.; Bae, S.; Lee, S.G. Dynamic compositionality in recursive neural networks with structure-

aware tag representations. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA,
27 January–1 February 2019; Volume 33, pp. 6594–6601.

https://app.sketchengine.eu/#dashboard?corpname=preloaded%2Fhrwac22_ws
 https://sentic.net/
 https://github.com/yurimalheiros/senticnetapi 
conceptnet.io
https://app.sketchengine.eu/#dashboard?corpname=preloaded%2Feng_jsi_newsfeed_virt
https://app.sketchengine.eu/#dashboard?corpname=preloaded%2Feng_jsi_newsfeed_virt

	Introduction
	Labeling Lexical Graphs
	ConGraCNet: Distinguishing Lexical Associations Using Syntactic Dependency Graph
	Labeling the Lexical Associations Using the Wordnet Hypernym Relation

	Assigning Sentiment Value in Lexical Graphs
	Sentiment Dictionaries
	Calculating Sentiment Value of a Lexical Graph
	Calculating Sentiment Value of a Lexeme
	Sentiment Potential: Graph Propagation Algorithm for Lexeme Sentiment Value
	Visual Representation of Sentiment Potential

	Analyzing Sentiment Dynamics 

	Evaluation
	Discussion
	Conclusions and Future Work
	References

