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ABSTRACT 

 

 

This doctoral thesis aims to develop new neural network models that will explore how feedback 

projections in the visual cortex contribute to top-down modulations of visual perception. Two 

types of top-down effects are considered: 1) Selective visual attention and 2) prior expectations. 

The models represent modifications and extensions of previously published models of lateral 

inhibition and adaptive resonance theory. The proposed models are thoroughly evaluated using 

computer simulations implemented in MATLAB. The models’ outputs are compared with 

behavioral and neural data. 

The first part of this thesis develops a model of the recurrent competitive network with 

the ability to flexibly orient attention in a spatial map to either a single location in space, all 

locations occupied by an object, or all locations occupied by the feature value. To achieve this 

property, the network was augmented by biophysically plausible mechanisms emulating 

properties of synaptic and dendritic computation. The proposed network can simulate object-

based attention and implement visual routines, such as mental contour tracing, when further 

embedded in a more extensive multi-scale neural architecture for boundary detection. 

The second part of this thesis develops a neural network for color perception based on 

adaptive resonance theory. The model explains how feedback projections contribute to the 

stable learning of color codes and conscious experience of colors. The model demonstrates that 

the same mechanisms that assure learning stability are also responsible for constraining the 

effect of top-down expectations on color perception. In general, the model indicates that top-

down predictions, to a large extent, do not alter the content of conscious visual perception.  

 

Keywords: neural networks, visual attention, top-down effects, cognitive impenetrability of 

vision, adaptive resonance theory, color perception 
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PROŠIRENI SAŽETAK 

 

 

Neuroznanstvena istraživanja pokazuju da se vidna percepcija odvija u nizu hijerarhijski 

organiziranih kortikalnih mreža među kojima postoje uzlazne, lateralne i povratne veze. 

Postojanje povratnih veza upućuje na zaključak da silazni procesi kao što su očekivanja i 

uvjerenja nastala na osnovi prethodno stečenog znanja mogu mijenjati sadržaj perceptivnog 

iskustva i time direktno utjecati na vidnu percepciju. Opći cilj i svrha doktorskog rada je razvoj 

novih matematičkih modela neuronskih mreža i njihovo testiranje putem računalnih simulacija. 

Modeli su dizajnirani s ciljem pružanja uvida u to kako povratne veze u vidnom korteksu 

doprinose silaznim utjecajima na vidnu percepciju. U radu su razmotrene dvije vrste silaznih 

utjecaja: 1) vidna selektivna pažnja i 2) očekivanja. Novi modeli konstruirani su putem 

modifikacija postojećih modela lateralne inhibicije i teorije adaptivne rezonance kako bi 

objasnili recentne psihofizičke i neuroznanstvene nalaze o odnosu između selekcije lokacija, 

objekata i obilježja u prostoru i utjecaja očekivanja na vidnu percepciju. Metoda doktorskog 

istraživanja je simulacijsko modeliranje neuronskih mreža gdje se matematički opisi modela 

implementiraju i testiraju na računalu putem programa MATLAB. Ovom se metodom sustavno 

ispituju odgovori modela na podražaje slične onima koji se zadaju ispitanicima u psihološkim 

istraživanjima, a potom se dobiveni rezultati modela uspoređuju s empirijskim podacima.  

 U prvom dijelu doktorskog rada razvijena je rekurentna kompetitivna mreža s 

lateralnom inhibicijom za modeliranje selektivne pažnje. Na prostornoj mapi mreža ima 

sposobnost fleksibilnog odabira: jedne lokacije u prostoru, svih lokacija koje pripadaju nekom 

objektu ili svih lokacija koje pripadaju nekom obilježju. Mreža je proširena računalnim 

mehanizmima koji oponašaju moguću ulogu sinaptičkog prijenosa i dendrita u kortikalnoj 

obradi informacija. Drugim riječima, u mrežu su uključeni dendriti kao samostalne računalne 

jedinice te samoregulacija sinaptičkog prijenosa putem retrogradnih signala. Ovi mehanizmi 

povećavaju stabilnost mreže, smanjuju ukupnu količinu inhibicije u mreži i omogućavaju 

istovremenu selekciju arbitrarnog broja pobjednika koji su definirani zajedničkim obilježjem. 

Na taj način simulirano je formiranje Bulove mape i njezina elaboracija putem operacija 

presjeka i unije. Ukoliko se predložena mreža dalje ugradi u veću višerazinsku neuronsku 

arhitekturu za detekciju rubova ili linija, ona može simulirati prostornu selekciju objekta i 

implementirati vizualne rutine poput mentalnog praćenja kontura. 

 U drugom dijelu doktorskog rada razvijena je neuronska mreža za percepciju boje 

zasnovana na teoriji adaptivne rezonance. Mreža može pomiriti kognitivnu neprobojnost vidne 
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percepcije s neuroznanstvenim spoznajama o povratnim vezama u vidnom korteksu i silaznim 

utjecajima u vidnoj percepciji. Model objašnjava kako se neuronski signali koje registriraju 

čunjići u ranim stadijima vidnog procesiranja transformiraju u percepciju boje u kasnijim 

stadijima. Model također pokazuje da su za ograničavanje utjecaja očekivanja na percepciju 

boje odgovorni isti mehanizmi koji osiguravaju i stabilnost kodova za percepciju boje. 

Empirijski opaženi utjecaji očekivanja na percepciju boje objašnjavaju se kao posljedica 

privremenih nestabilnosti u dinamici mreže, koje dugoročno nestaju. Stoga model pokazuje da 

očekivanja ne mijenjaju sadržaj svjesne vidne percepcije, barem ne u velikoj mjeri. Općenito, 

doktorski rad pruža nove uvide u to kako povratne veze posreduju u silaznim utjecajima na 

vidnu percepciju. Također, predloženi modeli stvorili su brojne hipoteze za daljnja psihofizička 

i neurofiziološka istraživanja. 

 

Ključne riječi: neuronske mreže, vidna pažnja, silazni utjecaji, kognitivna neprobojnost vida, 

teorija adaptivne rezonance, percepcija boje 
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1.  INTRODUCTION 

 

 

1.1. Role of Feedback Connections in Visual Processing 

 

As early as 1890, William James stated that part of what we perceive comes from our 

senses, and another, more significant part comes from our own mind (Gage & Baars, 2018). 

Since then, “psychologists and neuroscientists have made remarkable advances in 

understanding the functional organization of the visual system, uncovering important clues 

about its perceptual mechanisms and underlying neural codes” (Tong, 2018, p. 1). Visual 

perception is not just a simple process of registering the amount of light that impinges upon our 

eyes. Rather, it involves a set of complex computations that transform noisy and incomplete 

retinal image into a rich and reasonably accurate representation of the external environment 

(Palmer, 1999). Determining how the brain accomplishes this feat is a significant challenge for 

psychology and neuroscience. The traditional view of the computation in the visual system is 

based on a hierarchy of processing stages (Lennie, 1998). Each stage adds new information to 

the evolving visual representation by applying a specific algorithm to its input and transmitting 

the results to the next stage in the hierarchy. From this perspective, the information flow in the 

visual system proceeds in a pure feedforward (bottom-up) fashion, starting from the retina and 

ending in the temporal and parietal cortex. However, anatomical and physiological studies have 

revealed many feedback or backward projections from higher to lower levels in the hierarchy 

(Gilbert & Li, 2013).  

Visual processing in the cortex is hierarchically organized and distributed across more 

than 30 areas (Felleman & Van Essen, 1991; Rockland & Pandya, 1979). A schematic 

description of the visual hierarchy is provided in Figure 1. At the bottom of the hierarchy is the 

primary visual cortex (V1) with small receptive fields tuned to basic visual features such as 

wavelength, orientation, retinal disparity, and motion direction. As we traverse the hierarchy to 

higher-order areas in the inferotemporal and parietal cortex, receptive fields increase in size, 

complexity, and selectivity (Nassi & Callaway, 2009).  

Visual processing is characterized by a division of labor between two parallel processing 

streams: ventral and dorsal (Bell et al., 2014; Milner & Goodale, 2008; Ungerleider & Mishkin, 

1982). The ventral stream, also known as a what stream, is involved in spatially invariant object 

recognition. Neurons in the ventral stream are selective for color, orientation, or more complex 

colors and line patterns combinations. The ventral stream includes areas such as V4, the lateral 
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occipital complex, and the inferotemporal cortex (IT). At the top of the ventral stream is the 

anterior IT, where neurons exhibit selectivity for complex 2-D or 3-D shapes and objects 

irrespective of their exact location in space. In contrast, the dorsal stream, also known as a 

where stream, is involved in encoding visual space, supporting sensorimotor integration and 

attention. Neurons in the dorsal stream are selective for motion direction and binocular 

disparity. The dorsal stream includes dorsal cortical areas such as the middle temporal and 

parietal cortex. At the top of the dorsal stream are areas in the parietal cortex that contribute to 

target selection for arm and eye movements, object manipulation, and visuospatial attention. 

Lesions studies further support division between these two streams. Ventral stream lesions 

impair complex shape and perceptual invariance discrimination. Dorsal stream lesions impair 

motion perception, speed discrimination, smooth pursuit eye movements, and the accurate 

encoding of visual space. Based on these observations, it was proposed that the computational 

goal of the ventral stream is to transform visual inputs into a perceptually invariant set of 

attributes that encode the enduring characteristics of objects. Conversely, the goal of the dorsal 

stream is to mediate the navigation and visual control of skilled actions directed at objects in 

the visible world (Bell et al., 2014; Milner & Goodale, 2008; Nassi & Callaway, 2009). 
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Figure 1. Ventral and dorsal streams. 

 

As can be seen in the ventral-dorsal pathway distinction (Figure 1), a prominent feature 

of the visual hierarchy is a set of feedforward projections from lower areas (such as from V1 to 

V2) and a dense set of feedback projections running in the opposite direction from higher to 

lower visual areas (such as from V4 to V2). Therefore, visual processing is rather bidirectional 

and not strictly hierarchical. Moreover, there is plenty of cross talk between the two pathways 

through parallel or horizontal connections across visual regions (Gage & Baars, 2018). In a 

recent review, Briggs (2020) noted that despite many efforts, it was surprisingly difficult to 

pinpoint the exact functional role of feedback projections. For example, feedback synapses from 

V1 to the lateral geniculate nucleus of the thalamus (LGN) outnumber feedforward synapses 

from the retina to the LGN by almost 10 to 1. Although they are more numerous, feedback 

synapses are small and located on distal dendrites implying that their postsynaptic currents are 

attenuated on the path to the soma of the target cell. They also have a low probability of 
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neurotransmitter release and generate small postsynaptic currents. In contrast, feedforward 

synapses are large and located on dendrites closer to the soma of the target cells. In addition, 

they have a high release probability and generate large postsynaptic currents (Bickford, 2016; 

Sherman & Guillery, 1998, 2006).  

Reviewed properties suggest that feedforward synapses have a strong driving impact on 

the target cell, while the effect of feedback synapses is weak and modulatory. Hence, 

feedforward synapses can drive the cell to a suprathreshold level even in the absence of 

feedback activity, while feedback synapses cannot do the same in the absence of simultaneous 

feedforward activity. In accordance with the classification between drivers and modulators, it 

has often been observed that feedback connections cannot alter the receptive field structure of 

the target cell derived from their feedforward inputs. Instead, feedback signals provide 

multiplicative gain modulation to the target cell without altering its tuning preferences (Briggs, 

2020). 

As disclosed in the previous paragraphs, it is clear that feedback projections have a 

distinct role in cortical processing. An important question that remains unanswered is the exact 

role of feedback connections in hierarchical visual processing and their contribution to 

subjective visual perception. Macknik and Martinez-Conde (2009) have suggested that the sole 

purpose of feedback connections is to maintain selective visual attention on the part of the visual 

field. Conversely, inspired by the predictive coding framework, several authors argue that 

feedback projections may communicate prior expectations about upcoming sensory events 

(Clark, 2013; Hohway, 2013; Friston, 2010). This thesis examines these two hypotheses from 

the perspective of computational cognitive neuroscience (Ashby & Hélie, 2011). The 

consequences of feedback connections on ongoing visual processing are explored by building 

neural network models. The following two sections review the findings on selective visual 

attention and its computational modeling. Section 1.4. reviews the findings on the role of 

predictions in visual perception from the perspective of a predictive coding framework. The 

focus will be on the issue of the cognitive penetrability of vision as a significant consequence 

of communicating predictions through feedback projections. Section 1.5 provides an overview 

of the adaptive resonance theory that offers an alternative view on feedback connections. This 

overview provides a basis for constructing a neural network model with feedback connections 

that simulates many properties of visual perception but is not cognitively penetrable. 
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1.2. Selective Visual Attention 

 

Visual attention can be allocated to a circumscribed area in space, an object irrespective 

of its exact shape, or a featural property such as color, orientation, or motion direction (Nobre 

& Kastner, 2014). Early studies demonstrated that a location is a unit of visual selection. 

According to a spotlight metaphor, attention operates like a beam of light that shines over part 

of the scene; it selects visual information that falls within a single, circular region of space and 

filters out everything else that falls outside (Posner, 1980). The spotlight of attention has a fixed 

radius that can be moved across visual space to highlight its different components. Three 

distinct processes control attentional movement across space: 1) disengaging attention from the 

currently attended location, 2) moving attention to a new location, and 3) engaging attention at 

a new location. Each of these processes require time to complete, so they leave distinct 

signatures (costs and benefits) in the performance pattern in a detection task depending on how 

attention is oriented prior to the stimulus presentation. The zoom lens model augments the 

spotlight metaphor, suggesting that the attentional spotlight radius can be flexibly adjusted, the 

way a camera lens can zoom in or out depending on the resolution the observer needs to achieve. 

When a higher resolution is required, the spotlight shrinks to capture greater detail over a 

smaller radius. Conversely, when low resolution is sufficient, the spotlight widens like the 

process of zooming out to pick up less detailed information across a larger space (Eriksen & St. 

James, 1986).  

Later studies revealed that the focus of attention does not have to be in the form of a 

spotlight; it can be shaped in ways that are more complex. For example, research revealed that 

an object could also serve as a unit of attentional selection, irrespective of its shape or position 

in the space. Studies have demonstrated that focusing attention on one part of the object leads 

to a processing advantage for other parts of the same object (Chen, 2012). Finally, attention 

could be allocated to visual features such as color or direction of motion independent of their 

spatial location. This form of attention has a global impact on complete visual representation 

and not just specific locations (Maunsell & Treue, 2006).  

There is also evidence that object-based attention is linked to spatial representation 

because observers may select all locations occupied by the same object (Hollingworth et al., 

2012). There are several contrasting explanations of how object-based attention generates this 

effect. Object-based attention may operate on a spatially invariant representation where all 

object properties are bound together (Vecera & Farah, 1994). Another possibility is that the 

object-based effects are a mere consequence of attentional prioritization. Hence, spatial 
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attention follows a sequential path. It is first engaged at the cued location, then moves to an 

unattended part of the cued object and finally jumps to the distractor object resulting in the 

processing advantage of the unattended part of the cued object relative to the distractor 

(Shomstein & Yantis, 2002, 2004). Finally, evidence reveals that object-based attention spreads 

along all locations occupied by the cued object (Richard et al., 2008). In this way, object-based 

attention selects a grouped array of locations in the retinotopic map (Hollingworth et al., 2012; 

O'Grady & Müller, 2000; Vatterott & Vecera, 2015).  

Roelfsema and Houtkamp (2011) developed an incremental grouping theory (IGT) to 

explain how a grouped array of locations is formed in the visual cortex. From this standpoint, 

perceptual grouping involves two qualitatively different processes: base and incremental 

grouping. Base grouping relies on feedforward connections to accomplish fast visual scene 

segmentation according to Gestalt grouping cues such as proximity, similarity, closure, and 

others (Brooks, 2014). In contrast, incremental grouping relies on horizontal and feedback 

connections to label all connected locations with enhanced firing rates (Roelfsema, 2006). This 

is a slow, serial process requiring more time to cover larger distances on the map. Incremental 

grouping is a visual routine that makes explicit those spatial relationships that are not readily 

available in the base grouping. Examples of such relations are whether two dots lie on the same 

contour or not or whether a dot lies inside or outside an enclosed region (Ullman, 1984, 1996). 

At the neural level, the propagation of an attentional label is achieved by comparing the activity 

levels of neurons subject to attentional modulations (A-units) with another class of neurons 

lacking such modulation and whose response is determined by their classical receptive field (N-

units). Such a computational scheme enables robust contrast-invariant labeling (Pooresmaeili 

et al., 2010). 

In the same way as object-based attention, feature-based selection may also involve the 

formation of the spatial map representing all locations occupied by the same feature value. This 

process is illustrated by a pattern-matching task, in which participants must decide whether two 

spatial patterns are the same or different. Each pattern consists of a 4 × 4 matrix of colored 

squares. In one condition, all squares have a unique hue, whereas, in the second condition, four 

sets of four squares share the same hue. Huang and Pashler (2007) found that participants were 

faster and more accurate in the second condition than the first. The same effect also appeared 

in symmetry detection and rotation tasks suggesting that participants are able to group squares 

sharing the same hue in the perceptual unit and evaluate it in a single processing step. These 

observations led Huang and Pashler (2007) to develop a Boolean map theory of visual attention 

where attentional selection involves dividing a spatial representation into two mutually 
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exclusive sets. One set represents currently selected locations, and the other represents all other 

locations that are not selected. Top-down guidance determines which locations are selected at 

any given moment. For example, we can choose to attend to all red items in the input. Therefore, 

a Boolean map is formed when all locations shaded in red are marked as selected (labeled as 1) 

and all other locations are ignored (labeled as 0). 

Based on the reviewed findings, it is natural to consider whether there is a single neural 

mechanism underlying space-, object-, and feature-based attentional selection or whether they 

rely on a distinct neural substrate. Given the complexity of visual processing in the cortex and 

the existence of parallel processing streams, it is likely that attentional selection is distributed 

across multiple cortical areas. However, there is also evidence that all three types of selection 

rely on a common spatial representation, suggesting the possible existence of a unique spatial 

map that can flexibly select location, object, or feature depending on the task demands or top-

down guidance. In this thesis, the computational requirements that such a spatial map must 

satisfy to support space-, object-, and feature-based selection are explored. The next section 

reviews current models of visuospatial selection.  

 

 

1.3. Computational Models of Visual Selective Attention 

 

Computational models of visual attention emphasize bottom-up, image-based control of 

attentional deployment (Itti & Koch, 2001). They rely on the concept of a saliency map, a 

retinotopic map that encodes how distinctive each map location is relative to its background. 

The saliency map integrates parallel inputs from feature maps that encode visual features such 

as colors, orientations, directions of motion, and so on. Each feature map detects the presence 

of its dedicated feature, but it also encodes a feature contrast, that is, how much the detected 

feature is different from its local neighborhood. For example, robust activity in the feature map 

for red color is observed when red dot is placed on a green background causing a significant 

feature difference in the input. Conversely, there would be weak activity in the feature map if 

the red dot were surrounded by other red dots. The saliency map sends feedforward input to the 

selection map, which chooses the location with maximal amplitude in the saliency map. The 

selection map indicates where the focus of attention is located at a given moment. Saliency 

computation and the selection of the most salient location depend on inhibitory interactions in 

the neural network. Hence, models of lateral inhibition will be reviewed next. 
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Lateral inhibition is an anatomical arrangement found at all stages of visual processing 

starting from the retina and LGN to the visual cortex (Spillmann, 2014; Spillmann et al., 2015). 

Lateral inhibition contributes to the formation of the cell’s receptive field. For example, in the 

retina, horizontal and amacrine cells mediate inhibition that forms off component of the ON-

center OFF-surround and OFF-center ON-surround cells. The cell’s name reflects circular 

excitatory (ON) and inhibitory (OFF) zones that lead to opponent interactions. Similar 

structures can also be found in the LGN and the visual cortex. The optimal stimulus for the ON-

center OFF surround cell is a light spot on a dark background, and for the OFF-center ON-

surround, it is a light ring with a dark center. Interestingly, the cell is silenced when light covers 

both the ON and OFF components of the receptive field, suggesting that the cell encodes 

stimulus contrast and not the absolute amount of light falling on its receptive field. Moreover, 

the stimulus contrast is enhanced by lateral inhibition as observed by overshoots and 

undershoots in the activity profile of retinal cells when they encode luminance step. This 

property is relevant for understanding many perceptual phenomena including visual illusions 

(Spillmann, 2014).  

In computational modeling, two types of lateral inhibitory architectures are often 

distinguished: nonrecurrent or feedforward and recurrent or feedback inhibition, as shown in 

Figure 2 (Levine, 2019, Chapter 4). Feedforward inhibition refers to the feedforward projection 

of lateral inhibitory collaterals to a subsequent processing stage in the hierarchy. Hence, nodes 

within the same network layer do not interact with each other. Instead, the inhibitory effect is 

expressed in the next processing stage. Feedforward inhibition exhibits simple dynamics 

because target nodes always converge on a fixed point. Feedforward inhibition is employed in 

modeling early visual processing, including spatial, brightness, and motion perception 

(Carpenter & Grossberg, 1991; Grossberg, 1988). In modeling visual attention, feedforward 

inhibition is used to compute saliency or feature contrast within maps encoding visual features 

(Itti & Koch, 2001). For example, suppose that an input consists of a red dot surrounded by 

many green dots. In this case, the red dot is more salient; it pops-up on the background of green 

dots. To account for this effect, it is sufficient to assume independent feedforward lateral 

inhibition in the map encoding red color and the map encoding green color. Since there is just 

one red dot, the total amount of lateral inhibition in the red map will be small, resulting in strong 

activity at the location of the red dot. In contrast, many green dots will produce strong lateral 

inhibition and, consequently, a low activity level at the corresponding locations. Consequently, 

the red dot will stand out due to a higher activity level in the saliency map relative to the green 

dots, and it will be selected first.  
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Another form of lateral inhibition is recurrent inhibition (Levine, 2019, Chapter 4), 

which refers to mutual lateral interactions within the same node layer. The network with 

recurrent inhibition typically consists of an array of excitatory nodes reciprocally connected 

with the small population of inhibitory interneurons. In this case, more complex dynamics is 

possible including oscillations and chaos (Ermentrout, 1992). The type of dynamics that the 

network will display is determined by its parameters, that is, the synaptic weights that control 

the strength of self-excitation and lateral inhibition. In certain parameter ranges, the network 

with recurrent inhibition will settle on a fixed point where a single node remains maximally 

active, while all other nodes are inhibited to zero (Rutishauser & Douglas, 2009; Rutishauser 

et al., 2011). The winner is a node that receives the strongest input. This is an extreme form of 

competition known as winner-takes-all (WTA) behavior. The WTA network makes a binary 

decision among received inputs. These are employed in modeling decision-making, object 

recognition, and visual attention (Carpenter & Grossberg, 1991; Grossberg, 1988). In modeling 

visual selective attention, the WTA network is used to select the most salient location to which 

attention should be directed (Itti & Koch, 2001). 
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Figure 2. (A) Feedforward inhibition and (B) recurrent inhibition. Black arrows depict excitatory 

connections, whereas gray arrows depict inhibitory connections. Self-excitation is not shown. 

 

A significant problem facing the WTA network is that it quickly loses its capacity to 

represent winners as the number of winning nodes increases (Haarmann & Usher, 2001; Usher 

& Cohen, 1999). This feature is undesirable if multiple winners should simultaneously remain 

active. This situation arises when modeling object- and feature-based selection; the WTA 

network must select all locations occupied by the object or all locations occupied by the same 

feature value. The reason for the inability of the standard WTA network to represent multiple 

winners is that the total amount of lateral inhibition among nodes increases proportionally to 

the number of active nodes. The consequence of raising inhibition is that all nodes, even those 

receiving strong input, will eventually be silenced to zero making the WTA network incapable 

of representing the winning object or feature. This problem cannot be solved simply by reducing 

the strength of lateral inhibition because weak inhibition will also allow non-winning nodes to 

remain active. In addition, it is not possible to know in advance the size of the winning object 

or the number of locations the winning feature value contains to precisely adjust the inhibitory 

weights. Instead, a more principled method is required to address this problem. In particular, it 
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is crucial to find a way to control excessive inhibition. The thesis analyzes the problem of 

multiple winners in detail and offers a solution that greatly expands the capability of the WTA 

network to select winners flexibly based on the task demands. In particular, two biophysically 

plausible neural components that can solve the problem of simultaneously representing an 

arbitrarily large number of winning nodes without sacrificing the network’s ability to make 

selections are proposed. 

 

 

1.4. The Effect of Expectations on Visual Perception  

 

The second hypothesis examined in this thesis is that feedback projections transmit 

expectations about upcoming sensory events from higher to lower stages in the visual hierarchy. 

This hypothesis arises from the predictive coding framework suggesting that visual perception 

is an inferential process because the brain is designed to perform statistical (Bayesian) 

inference. Predictions encode prior knowledge about the environment and help to disambiguate 

noisy retinal signals. Beliefs about the current state of the environment are updated under 

observed sensory evidence (Clark, 2013; Hohwy, 2013). For example, light projected on the 

retina loses information about the distance from which it is emitted. Thus, the brain needs to 

use prior knowledge about the retinal disparity of image elements to recover information about 

the depth from the observer. Such reconstruction is critical for survival because it allows 

individuals to navigate through three-dimensional space successfully. The generative model 

does not always fit the sensory data well, and the visual system generates prediction errors that 

should be minimized by revising the generative model. The Bayes rule prescribes a principled 

way of optimizing the model in light of new data by specifying how to compute the posterior 

probability of a given hypothesis based on its prior probability and observed evidence. 

According to a closely related free-energy principle, the prediction error is undesirable because 

it signals that the individual has lost homeostatic balance with the environment. Free energy 

formulation also helps to explain how to optimize generative models in a hierarchical 

architecture where predictions and prediction errors flow across multiple processing stages 

(Friston, 2008, 2010). 

The predictive coding framework assigns specific functional roles to feedforward and 

feedback projections (Bastos et al., 2015; Keller & Mrsic-Flogel, 2018; Shipp, 2016). Feedback 

projections communicate predictions or expectations about incoming sensory stimulation to the 

next lower area. In contrast, feedforward projections compute prediction error and propagate it 
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to a higher level in the visual hierarchy. From this standpoint, feedforward activity should be 

strong when the visual system faces unpredictable stimulus because its activity is proportional 

to the deviation of sensory signals from the prediction. In contrast, predictable stimulus should 

generate only weak feedforward activity because there is no deviation, and feedback projections 

successfully explain what caused it. Hence, there is no new information to communicate to a 

higher level in the hierarchy. An additional advantage of this processing scheme is that, with 

the predictable stimuli, feedforward projections do not generate spike trains and consequently 

save costly energy (Aitchison & Lengyel, 2017). Computational implementations of predictive 

coding have successfully modeled some of the response properties of cells in visual cortex, such 

as end-stopping and biased competition (Rao & Ballard, 1999; Spratling, 2008, 2010). 

Several authors have observed that predictive coding implies cognitive penetrability of 

vision (CPV) suggesting that generative models directly modulate and shape visual perception 

(Lupyan, 2015a, 2017a; Newen & Vetter, 2017; O’Callaghan et al., 2017; Vetter & Newen, 

2014). For example, Lupyan (2015a, p. 547) explicitly stated that “expectations, knowledge, 

and task demands can shape perception at multiple levels, leaving no part untouched.” This 

notion derives from the global minimization of prediction error that constrains bottom-up 

activity by top-down knowledge. Moreover, the author claimed that the cognitive malleability 

of perception implies that our belief in the reliability of perception is misplaced. Visual 

perception is as good at picking up information from the environment as its generative models 

allow it to be (Lupyan, 2017b). Along the same lines, O’Callaghan et al. (2017) reviewed 

evidence suggesting that predictions are derived from a rich source of cognitive, affective, and 

contextual associations that directly influence visual perception because they carry essential 

information missing from raw sensory stimulation. From this perspective, visual perception 

requires a delicate balance between bottom-up and top-down signals. Disrupting this balance, 

as observed in some neuropsychiatric disorders, leads to visual hallucinations, supporting the 

importance of top-down processes in visual perception. O’Callaghan et al. (2017, p. 63) 

concluded that “…predictive penetration, be it cognitive, social or emotional, should be 

considered a fundamental framework that supports visual perception.” Many behavioral and 

neuroimaging studies of top-down effects on visual perception support this view, demonstrating 

that knowledge, beliefs, actions, and emotions alter the content of visual experience (reviewed 

in O'Callaghan et al., 2017). For example, information about which of two oriented gratings 

were more likely to occur in a display heightened visual sensitivity to a cued orientation during 

fine orientation discrimination (Cheadle et al., 2015). Functional neuroimaging demonstrated 

modulations in V1 activity that correlated with top-down predictions (Edwards et al., 2017). 
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However, behavioral studies supporting CPV have been criticized due to a lack of 

methodological rigor (Firestone & Scholl, 2016). A significant obstacle in testing CPV is that 

behavioral response does not need to reflect visual perception directly because it is 

simultaneously influenced by several extra-visual sources. For example, wearing heavy 

backpacks led participants to overestimate a hill’s steepness, suggesting that kinesthetic 

information provided by the muscles modulates the perception of the slant (Bhalla & Proffitt, 

1999). However, this finding may simply reflect experimental demands because it was evident 

to the participants which hypothesis was being tested. When the relationship between the 

backpack and the perceptual task was made less obvious, the effect of the backpack disappeared 

(Durgin et al., 2009). It seems that there is a general tendency in studies reporting CPV to 

confuse visual perception with judgment or decision-making (Firestone & Scholl, 2017).  

The same problem of failure to distinguish between perception and decision-making 

also arises in studies examining the effect of prior knowledge on basic perceptual attributes 

such as color. Several studies reported on the so-called memory color effect where color 

adjustments of a gray object are biased toward complementing the typical color in which the 

object appears (Hansen et al., 2006; Olkkonen et al., 2008; Witzel et al., 2011). For example, 

participants adjusted gray bananas to the bluish hue to offset perceived yellow retrieved from 

memory. However, the memory color effect could arise from the indeterminacy of instructions 

to participants and their conscious decision to offset the adjusted color from neutral gray to be 

on the safe side (Zeimbekis, 2013). Valenti and Firestone (2019) eliminated such response bias 

by asking participants to choose an odd item from a set of three alternatives (gray banana, bluish 

banana, and gray object without diagnostic color). In this condition, participants should choose 

the gray banana as an odd item because it should appear yellowish. In contrast, the blue banana 

should appear neutral gray and, consequently, indistinguishable in hue from the gray object 

without diagnostic color. However, participants predominantly chose the bluish banana as an 

odd item suggesting that they were not influenced by color retrieval from memory. 

Another concern is that behavioral and neuroimaging studies were often conducted with 

a small number of participants, leading to insufficient statistical power to detect the actual 

effect. Consequently, researchers sometimes resort to searching for patterns in the data instead 

of testing the hypothesis. This is not how hypothesis testing should be conducted (Francis, 

2019). Such a strategy may lead to false-positive findings regarding CPV. For example, in a 

recent attempt to find the perceptual signature of a prediction error computation, Staadt et al. 

(2020) reported the new illusion that observers experience when they briefly viewed the 

superposition of two orthogonally oriented gratings. After abruptly removing one of the 
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displayed orientations, instead of strictly seeing the remaining orientation, observers reported 

an illusory perception of the arithmetic difference between previous and actual orientations. 

However, the effect appeared in only 7 out of 15 participants. Moreover, even those participants 

who reported seeing the illusion noticed it only occasionally.  

From the theoretical perspective, it is essential to distinguish between early and late 

vision (Marr, 1982; Pylyshyn, 1999). Early vision refers to the formation of surface 

representation in depth and is associated with neural processing in the lower portion of the 

visual hierarchy including, areas V1, V2, V3, V4, and MT. Conversely, late vision refers to 

object recognition associated with top levels of the visual hierarchy, such as IT. While there is 

general agreement that late vision is cognitively penetrable, there is controversy regarding 

whether the same conclusion could be extended to early vision (Raftopoulos, 2019; Raftopoulos 

& Zeimbekis, 2015). According to Pylyshyn (1999), early vision is an informationally 

encapsulated module with fixed, innate architecture. It is based on a specific set of principles 

that are fundamentally different from those governing central cognitive functions such as 

thinking or reasoning. Currently, the question arises of how early vision maintains its 

independence and separation from top-down influences in light of overwhelming evidence for 

feedback communication in the visual cortex. The answer provides a different theoretical 

framework described in the next section. 

 

 

1.5. Adaptive Resonance Theory as an Alternative to Predictive Coding 

  

To provide a computational argument that feedback projections in the visual cortex do 

not imply the cognitive penetration of visual perception, adaptive resonance theory (ART) is 

adopted as the theoretical framework for this thesis (Grossberg, 2013, 2017). ART is primarily 

designed to address the problem of stability in learning and memory in a dynamic environment. 

Many neural network algorithms suffer from catastrophic forgetting because learning new input 

patterns erases old memories. According to Grossberg (2013), the solution to the problem of 

catastrophic forgetting is to compare sensory (bottom-up) data with learned (top-down) 

expectations, transmitted via feedback projections. If the input pattern is matched with one of 

the previously learned codes (categories), it is recognized as a familiar pattern. Familiarity with 

the pattern is signaled by the resonance or mutual excitatory reinforcement between the sensory 

pattern and top-down activation. Grossberg (2017) argued that the resonant state in the network 

corresponds to our conscious visual experience. Conversely, if there is a mismatch between the 
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input pattern and the learned expectation, a novelty detection system is activated, resetting the 

currently activated expectation and thus erasing its trace from the network activity. 

The previous description demonstrates that ART manages the match or mismatch 

between the bottom-up input and top-down expectations differently relative to predictive 

coding. In ART, the match is reinforced by mutual excitation between feedforward and 

feedback projections leading to a resonant or conscious state. In contrast, the mismatch activates 

the reset mechanism, removing erroneous predictions from ongoing processing in the ART 

circuit. Thus, top-down predictions cannot influence visual perception arbitrarily, as suggested 

by Lupyan (2015a) and O’Callaghan et al. (2017). In ART, the neural processing is driven by 

bottom-up input. This property is used to argue that ART is a predictive system that is not 

cognitively penetrable. In this thesis, a specific implementation of the ART circuit is developed 

and used to simulate some of the effects considered evidence for CPV.  

 

 

1.6. Research Aim, Objectives, and Problems 

 

 The overarching aim of this doctoral thesis is to develop new neural network models 

that clarify how top-down effects such as visual selective attention and expectations affect 

visual perception. The models will be tested and evaluated through a set of computer 

simulations. 

 

The specific objectives of this doctoral thesis are presented as follows: 

1. To develop a recurrent competitive neural network capable of flexibly selecting a 

location, object, or specific feature value depending on top-down guidance. To examine 

how to extend the standard WTA network model to enable the simultaneous selection 

of multiple winners without degrading its representational capacity. The proposed 

model should unite the Boolean map theory of visual attention (Huang & Pashler, 2007) 

with incremental grouping theory (Roelfsema & Houtkamp, 2011) to provide a 

comprehensive description of the implementation of visuospatial selection in the visual 

cortex. 

2. To develop a neural network model based on adaptive resonance theory to simulate 

behavioral findings on the top-down influences on visual perception. The model should 

reconcile the cognitive impenetrability of visual perception with anatomical and 

functional data on the existence of massive feedback projections in the visual cortex. 
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Hence, this thesis explores the degree to which ART is a viable alternative to the 

predictive coding framework for understanding the role of feedback projections in 

cortical information processing. 

 

 

1.7. Research Methodology 

 

Computational cognitive neuroscience is an interdisciplinary scientific domain that 

integrates knowledge from psychology, neurobiology, mathematics, and computer science to 

study the relationship between the mind and brain. Theoretical models of neural networks 

provide a unique perspective on addressing a significant challenge: How do complex brain 

interactions generate intelligent behavior? Such models enable rigorous quantitative 

investigation into how neurons and their synaptic connections give rise to cognitive functions 

such as visual perception and attention (Ashby & Hélie, 2011; Levine, 2019; O’Reilly & 

Munakata, 2000).  

 

 Computer simulations of neural network models are employed as the primary research 

method. This method consists of the following steps:  

1. Specification of the mathematical model of a neural network designed to solve a specific 

perceptual or cognitive task, 

2. Formal analysis of the model and its properties (stability analysis, the existence of fixed 

points), 

3. Model translation into the simulation software and comprehensive computer testing, 

and 

4. Comparison of the model output with behavioral findings on humans or primates. 

 

The proposed neural networks are implemented using in the MATLAB programming 

language for scientific calculations. Stimuli similar to those used in published psychophysical 

or neurophysiological experiments are employed as inputs to the neural networks to facilitate 

comparison with empirical studies. Network models are described using the system of non-

linear differential equations specifying how neural activity evolves over time. Computer 

simulations involve the numerical integration of differential equations using Euler’s method 

with fixed time steps.  
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1.7.1. Winner-Takes-All 

 

To address the first objective, a new model of lateral inhibition that simultaneously 

selects multiple locations in a 2-D spatial map representing visual space is developed. Previous 

models of visuospatial selection rely on an extreme form of competition known as a WTA 

network, described in Section 1.3. The WTA network consists of an array of excitatory nodes 

reciprocally connected with the small population of inhibitory interneurons (Rutishauser & 

Douglas, 2009; Rutishauser et al., 2011). This anatomical arrangement leads to lateral inhibition 

between excitatory nodes and consequently to the selection of a single node receiving the 

maximal input. Such behavior is consistent with space-based attention but is inadequate to 

handle object- or feature-based attention because these forms of attention require the 

simultaneous selection of many arbitrary locations in the spatial map. An excessive amount of 

recurrent inhibition in the WTA network has been identified as a significant obstacle to 

selecting multiple winners (Haarmann & Usher, 2001; Usher & Cohen, 1999).  

In this thesis, it is proposed that the WTA network can correct this problem by engaging 

additional mechanisms such as synaptic (Abbott & Regehr, 2004) and dendritic computation 

(Häusser & Mel, 2003; London & Häusser, 2005). Recurrent excitation among WTA nodes 

should be mediated via dendrites whose output nonlinearity prevents instability or the 

unbounded growth of neural activity caused by the positive feedback loop. Furthermore, the 

inhibitory interneuron should compute the function maximum instead of the sum over its input 

from the excitatory nodes. This is achieved by presynaptic inhibition, which acts upon synaptic 

transmission and regulates the amount of transmitter release in an activity-dependent manner. 

The proposed computational elements increase WTA network stability but simultaneously 

increase flexibility in shaping attentional selection according to the task demands.  

 

1.7.2. Adaptive Resonance Theory 

 

To address the second objective, a real-time implementation of ART (described in Section 

1.5.) is developed to explain how color-opponent responses in the early stages of visual 

processing are transformed into color categories in the later stages. It is demonstrated how 

feedback projections contribute to the stable recognition and conscious experience of colors. 

However, it is also shown that the same mechanisms that enable learning stability also prevent 

expectations from directly influencing perception. Instead, the observed empirical effects of 

expectations and prior knowledge on color perception are attributed to temporary instability in 
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the network dynamics while seeking the best match between bottom-up input and top-down 

expectations. Hence, it is demonstrated that ART (Grossberg, 2013, 2017) offers an attractive 

alternative theoretical framework that explains several examples of top-down effects on 

perception in a fundamentally different way compared to the currently dominant predictive 

coding model (Clark, 2013; Hohwy, 2013). 

 

 

Figure 3. Adaptive resonance theory (ART) circuit. 

 

ART is a three-layer architecture with two auxiliary mechanisms for controlling network 

activity: a gain control mechanism and a reset mechanism (Figure 3). Layers are denoted as F0, 

F1 and F2 (Carpenter & Grossberg, 2003). The F0 layer is an input layer that registers the pattern 

of sensory stimulation. Next, the F1 layer reads-out the sensory pattern from F0 and combines 

it with the top-down expectations arriving from the F2 layer. The activation flows from F1 to F2 

and passes through a filter of adaptive weights. Finally, the F2 layer is a WTA network 

representing the category or concept that best matches the sensory input. The Gain Control 

mechanism enables the distinction between sensory stimulation and internal activation. Only 
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sensory stimulation can reach the suprathreshold activation and ignite the resonance between 

the F1 and F2 layers. Finally, the Orienting subsystem monitors for the difference between 

bottom-up activation from F0 and top-down activations from F2; it produces a reset signal when 

the difference is greater than a prescribed value controlled by the vigilance parameter. The reset 

signal shuts-off the currently active F2 node and initiates a search for another F2 node providing 

a better match with the sensory pattern. 
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2. ELABORATION 

 

 

This doctoral thesis is written in the format of a compilation thesis. It consists of a 

compendium of four scientific papers published in indexed journals. This section provides a 

comprehensive overview of the research questions, methodology, results, and conclusions 

presented in these papers to document the thesis coherence. 

 

 

2.1. An Overview of Studies 

 

 Studies by Marić and Domijan (2018a) and Marić and Domijan (2019) addressed the 

first thesis problem to examine whether it is possible to design a new recurrent competitive 

neural network model of selective visual attention that can select a location, object, or specific 

feature value depending on the task demands. The standard approach to modeling selective 

visual attention is to employ a recurrent competitive network known as the WTA network, 

which implements an extreme form of competition where only a single node, receiving maximal 

input, survives competition and remains active in the network, while all other nodes are silenced 

to zero. Such a model is not adequate to simulate the properties of object- and feature-based 

attention because they require the simultaneous selection of multiple units. To address this 

issue, the standard WTA network is extended by including two new computational elements: 

dynamic regulation of synaptic transmission and dendritic nonlinearity. Computer simulations 

revealed that the proposed model successfully selects all locations occupied by the chosen 

feature as suggested by the Boolean map theory of visual attention (Huang & Pashler, 2007). 

In addition, the model exhibits object-based selection when one object location is cued by top-

down signals. In this case, the enhanced activity spreads from the cued location to all connected 

locations, thus selecting all locations occupied by the cued object. Hence, the proposed model 

implements contour tracing, an essential visual routine that enables the visual system to segment 

relevant and irrelevant objects in a scene populated with many objects (Roelfsema & 

Houtkamp, 2011).  

Marić and Domijan (2018b) review paper and Marić and Domijan (2020) study 

answered the second thesis problem to examine whether it is possible to design a neural network 

model to reconcile the cognitive impenetrability of visual perception with neuroscientific 

findings on feedback connections in the visual cortex. The answer to this question is positive 
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because there is a well-studied neural architecture, known as ART, capable of stable learning 

and recognizing of input patterns. A specific implementation of the ART circuit is designed to 

simulate color perception. Thus, it is named the color ART circuit. Computer simulations of the 

color ART circuit demonstrated that it could select the hue category most consistent with its 

cone-opponent input. Top-down signals arising from the object-recognition network could 

temporarily disrupt processing in the color ART circuit and bias its response toward the 

expected hue. However, top-down connections cannot have long-lasting effects because a reset 

mechanism assuring learning stability clears them. Thus, the experimentally observed effects 

of top-down influences on color perception are ascribed to the uncertainty that arises in the 

short period after the stimulus presentation when the color ART circuit has not yet found the 

hue category that best matches the input pattern. 

 Together, these models demonstrate that visual perception is not cognitively penetrable 

most of the time, although its neural substrate involves the coordinating interplay between 

feedforward and feedback connections. 

 

 

2.1.1. A Model of Feature-Based Spatial Selection 

 

Marić and Domijan (2018a) developed a new model of the WTA network that can 

simultaneously select multiple spatial locations based on a shared feature value. The model is 

named the feature-based WTA (F-WTA) network because the selection unit is not a point in 

space or an object, but an abstract feature value set by top-down signals. This study 

demonstrates how the F-WTA network implements the central proposal of Boolean map theory 

of visual attention (see Appendix A for the entire paper and Appendix E for supplemental 

materials containing the MATLAB code to reproduce all results). 

 

2.1.1.1. Introduction 

 

According to Huang and Pashler’s (2007) Boolean map theory of visual attention, 

feature-based attention involves the selection of all locations occupied by the same feature value 

(e.g., red) per dimension (e.g., color). When forming a Boolean map, all spatial locations 

occupied by the chosen feature value are selected, and all others are ignored. In other words, 

the Boolean map controls spatial selection and access to consciousness. After creating a 

Boolean map, it is possible to operate on its output by applying the set operations of intersection 
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and union. A conjunction search task in which two feature dimensions (e.g., color and 

orientation) should be combined to find the target object (e.g., red horizontal bar) is an example 

of the intersection of two Boolean maps. First, a Boolean map is formed by the top-down cueing 

of the red items irrespective of their orientations. Second, the observer cues the horizontal items 

among these selected red items so that the resulting Boolean map represents the intersection of 

red and horizontal items. Similarly, the union between two Boolean maps is achieved by top-

down cueing the red items in the first step and cueing the horizontal items in the second step. 

However, the locations selected in the first step are simultaneously maintained in the memory 

so that the resulting Boolean map can simultaneously represent the locations of all red and all 

horizontal items.  

Computational models of selective visual attention rely on the WTA network to select 

only the most salient location in the input image. A WTA network capable of computing with 

Boolean maps should arbitrarily select many locations that share a common feature value 

without degrading the representation of winners. Likewise, the WTA network should be capable 

of state-dependent computation in which new inputs are combined with the current memory 

state. The standard WTA network cannot achieve these computational goals because it suffers 

from capacity limitations and is incapable of state-dependent computation. To address these 

issues, a new WTA network is being developed to provide a neural implementation of the 

Boolean map theory of attention. 

This study aims to explain of how a Boolean map may be formed in a recurrent 

competitive network that can implement feature-based WTA (F-WTA) selection. This aim is 

achieved by extending the WTA model based on linear-threshold units (Hahnloser, 1998; 

Hahnloser et al., 2003; Rutishauser & Douglas, 2009). This WTA model consists of a single 

inhibitory unit reciprocally connected to a group of excitatory units. We elaborated on this basic 

WTA design by introducing two processing components: dendritic nonlinearity and retrograde 

inhibitory signaling. These biophysical mechanisms are plausible candidates for computation 

in existing neural networks. The dendritic tree is modeled as a separate electrical compartment 

with its own non-linear output supplied to the node’s body. This component is introduced to 

prevent excessive excitation arising from self-recurrent and nearest-neighbor collaterals 

(Branco & Häusser, 2010; London & Häusser, 2005; Häusser & Mel, 2003; Mel, 2016). 

Alternatively, retrograde signaling crates a feedback loop that dynamically regulates the amount 

of neurotransmitter released from presynaptic terminals. This component is introduced to 

isolate winning nodes from mutual inhibition (Alger, 2002; Regehr et al., 2009; Tao & Poo, 

2001; Zilberter et al., 2005). Hence, the extent of network inhibition is significantly reduced 
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because the inhibitory interneuron computes the maximum instead of the sum of its recurrent 

excitatory inputs. Consequently, winning excitatory nodes release retrograde signals and block 

inhibition from the inhibitory interneuron. Thus, irrespective of the number of winning nodes 

or their spatial arrangement, arbitrarily many winners can be selected simultaneously.  

We followed Hamker’s (2004) model to describe and illustrate cortical computations 

underlying attentional guidance by top-down feature-based cues. The proposed F-WTA circuit 

is situated in a more extensive neural architecture consisting of a model of cortical area V4, the 

inferotemporal cortex (IT), the posterior parietal cortex (PPC), and the frontal eye fields. Top-

down signals that provide feature cues originate in the IT, which contains a spatially invariant 

representation of relevant visual features. The IT sends feature-specific feedback projections to 

V4, where topographically organized feature maps representing each feature value are located. 

We hypothesized that the F-WTA network resides in the PPC, where it receives summed input 

over all feature maps from the V4. Top-down guidance is implemented by a temporary increase 

in activity amplitude in one of the V4 feature maps. Top-down signals to the feature map are 

modeled as a multiplicative gain in neural activity, consistent with neurophysiological findings 

(Martinez-Trujillo & Treue, 2004; Maunsell & Treue, 2006; Treue & Martinez-Trujillo, 1999). 

A set of computer simulations was performed to illustrate the model’s behavior. The 

input was delivered as a vector of 200 excitatory units and 1 inhibitory unit. Differential 

Equations were solved numerically using MATLAB’s ode15s solver. The simulations were run 

for 250 arbitrary time steps. First, a simulation of the formation of a single Boolean map was 

performed to demonstrate how it arises in the F-WTA network in response to the presentation 

of the color cue. Next, a simulation of the intersection and union of two Boolean maps 

demonstrated how the model achieves these set operations. Finally, a simulation of bottom-up 

spatial selection was performed to show that, in the absence of top-down guidance, the network 

selects the most salient locations based on the bottom-up input. 

 

2.1.1.2. Simulation of the Formation of a Single Boolean Map 

 

In the simulation of single Boolean map formation, the input consisted of red and green 

items of equal sizes intermixed in space on a black background. The top-down gain was applied 

to red items at t = 50, meaning the red color was attended. Consistent with findings that feature-

based attention spreads across the entire visual field (Saenz et al., 2002, 2003; Serences & 

Boynton, 2007), top-down gain was also applied to the empty space between items. The 
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duration of the top-down cue was 50 simulated time steps. Subsequently, at t = 150, the green 

color was cued in the same way.  

At the beginning of the simulation, the F-WTA network selected all presented items 

together, irrespective of their color. This is evident in the first 50 ms of the simulation. In the 

next step, when the red color was cued by applying top-down signals to the corresponding 

feature map (at t = 50 ms), the network created a Boolean map by selecting the spatial pattern 

associated with the red color. Due to self-excitation, the network maintained the cued feature 

value locations in working memory even after the cue was removed. When the observer decides 

to switch attention to another feature value (at t = 150 ms), the network selects the locations of 

the new feature value (green) and suppresses the locations associated with the previously cued 

value (red) without requiring an external reset. Namely, the network is sensitive to input 

changes even though it also exhibits activity persistence. Notably, the activity level at the 

selected locations is invariant regarding the number of active nodes. This is a consequence of 

retrograde inhibitory signaling in the recurrent pathways between excitatory and inhibitory 

nodes.  

Additionally, this simulation demonstrated that the F-WTA network could support 

space- and object-based attention alongside feature-based attention. When the spatial cue was 

applied to a single location in one of the feature maps, the network responded by selecting only 

this location. Neighboring nodes were not selected because they received weaker input than the 

cued node. Interestingly, when the spatial cue was removed, the network activity started to 

propagate from the cued node toward the boundary of the entire object (i.e., all the locations 

connected to it). Therefore, the F-WTA network exhibits object-based selection. This finding 

is consistent with neurophysiological studies that have observed the spread of enhanced activity 

along the object’s (reviewed in Roelfsema, 2006; and Roelfsema & Houtkamp, 2011). 

Moreover, this simulation shows that spatial attention can be easily oriented toward a new 

location in a single jump without the need for attentional pointers that move attention across 

the map, as in Hahnloser et al.’s (1999) model. 

 

2.1.1.3. Simulation of the Intersection and Union of Two Boolean Maps 

 

In the simulation of the intersection of two Boolean maps the visual input consisted of 

red and green horizontal, and red and green vertical bars. In the first step, the F-WTA network 

was cued to select red bars, irrespective of orientation. In the second step, the network was cued 

to select horizontal bars, regardless of their color. Since the green vertical bars were already 
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suppressed because they received a weak top-down signal, the network output was the selection 

of a subset of the red bars that were also horizontal. In other words, the network activity 

converged to the intersection between a set of red and horizontal bars. 

In the simulation of the union of two Boolean maps, the visual input consisted of two 

non-overlapping components: colored squares that activate only feature maps for color and 

achromatic horizontal and vertical bars that activate only feature maps for orientation. Red-

colored items occupied locations between 1 and 100 and oriented bars between 101 and 200, 

closely resembling Huang and Pashler’s (2007) stimulus. The red color was cued in the interval 

[50, 100], and horizontal items were cued in the interval [110, 160], leading to the formation of 

the union of red and horizontal items, that is, the simultaneous selection of all red and all 

horizontal items presented in the input. However, we have demonstrated that if top-down cues 

do not follow each other closely, the second cue overrides the network activity remaining from 

the first cue. Taken together, the results indicate that the union of two Boolean maps is possible 

only when two top-down cues partially overlap in time or when the second cue closely follows 

the withdrawal of the first cue. 

 

2.1.1.4. Simulation of Bottom-Up Spatial Selection 

 

In the simulation of bottom-up spatial selection, different input magnitudes were 

arbitrarily assigned to different items. As illustrated in the paper in Appendix A, without top-

down guidance, F-WTA selects the most salient object. This ability depends on the difference 

in the input magnitudes. The simulation illustrates that the difference between the two most 

active nodes should be sufficiently large to separate them. Otherwise, the two most salient items 

would be chosen. The precision of saliency detection depends on the threshold for activating 

the synaptic receptors on the inhibitory interneuron. If the values were smaller than Ty = 0.1, 

the network would improve its precision and could separate two objects but would lose the 

ability to form a union of two Boolean maps.  

In addition, this simulation demonstrated that the network is sensitive to the sudden 

appearance of a new object in the scene, suggesting that it can be guided by bottom-up feature 

cues in the absence of top-down cues (Theeuwes, 2013). Such bottom-up guidance could result 

from robust inputs arriving from the transient channel. A transient channel can override the 

network’s current memory state and enable the network to reorient attention and select a new 

object that suddenly appears in the visual scene (Kulikowski, 1973). When the abrupt onset 

produces only a weak transient signal, F-WTA network activity stays on the previously attended 
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item, consistent with the behavioral findings that the abrupt onset can be ignored in some 

conditions (Theeuwes, 2013). 

 

2.1.1.5. Discussion 

 

When comparing the F-WTA network with previous models of WTA behavior, we have 

found that F-WTA has several advantages. First, F-WTA successfully integrates information 

across space and time to form the intersection or union of two Boolean maps. Second, previous 

WTA models require the external inhibition of the current winner, or the introduction of a 

dynamic threshold or habituation to allow the attentional focus to move between locations 

(Horn & Usher, 1990; Itti & Koch, 2000, 2001; Kaski & Kohonen, 1994). There is no need for 

such external inhibition or habituation in F-WTA model. Instead, dendritic and synaptic 

nonlinearities ensure that the network dynamics are always sensitive to top-down or bottom-up 

guidance. Third, F-WTA employs a dynamic quenching threshold (QT) as in the competitive 

shunting model (Grossberg, 1973), where all nodes whose activity is above QT are enhanced, 

and others below QT are suppressed. Fourth, F-WTA can select and store arbitrarily many 

locations in the memory, consistent with behavioral findings that the ability to select multiple 

objects is not fixed (Alvarez & Franconeri, 2007; Davis et al., 2000; Davis et al., 2001; 

Liverence & Franconeri, 2015; Scimeca & Franconeri, 2015). Other WTA networks have 

limited capacity to represent multiple winners because they lack a mechanism for controlling 

inhibition between winning nodes (Usher & Cohen, 1999). 

Conversely, a limitation of the proposed model is that it does not implement all aspects 

of the theory proposed by Huang and Pashler (2007). Specifically, it does not explain why 

attention is limited to one feature value per dimension or how the observer sequentially chooses 

one feature value after another. Furthermore, in all reported simulations, items were segregated 

in space, unlike Huang and Pashler (2007), who employed a matrix of connected squares. 

Finally, input to the network does not follow the distance-dependent activity profile usually 

observed in the visual cortex. However, this issue is not critical for the model’s performance 

because selection precision is controlled by presynaptic terminal activation thresholds. 

In summary, this study demonstrates how the feature-based WTA network achieves the 

spatial selection of all locations occupied by the same feature value without suffering from 

capacity limitations. The network responds to the top-down cue by storing spatial pattern in 

short-term memory. The spatial pattern corresponds to the cued feature value, while non-cued 

feature values are suppressed. In this way, we demonstrated how the Boolean map is formed. 
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Additionally, computer simulations indicated that it is possible to create more complex spatial 

representations involving the intersection or union of two or more Boolean maps. Hence, the 

F-WTA network extends beyond the capabilities of previous models of the competitive neural 

network that cannot integrate information across space and time. This study suggests that 

dendritic nonlinearity and retrograde signaling are biophysically plausible mechanisms that are 

essential for the model’s success. To conclude, reported simulations suggest that the proposed 

F-WTA network model successfully implemented the Boolean map theory of visual attention 

and addressed the initial part of the first problem of the thesis. 

 

 

2.1.2. A Model of Object-Based Spatial Selection (Mental Contour Tracing) 

 

 The aim of Marić and Domijan’s (2019) study was to examine whether the model of the 

feature-based WTA network (proposed in Marić and Domijan, 2018a) supports the 

implementation of a complex cognitive operation such as mental contour tracing. This study 

demonstrates how to embed the F-WTA network into a larger neural architecture incorporating 

multi-scale contour and L-junction detection networks (see Appendix B for the entire paper and 

Appendix E for supplemental materials containing the MATLAB code to reproduce all results). 

  

2.1.2.1. Introduction 

 

Mental contour tracing is an example of a visual routine (Ullman, 1984, 1996) or 

incremental grouping process (Roelfsema & Houtkamp, 2011) that has been extensively studied 

at psychological and neural levels. It is engaged when the observer attempts to determine 

whether two image regions are connected or not. Detecting connectedness is vital because 

connected image components are likely to belong to the same objects, whereas disconnected 

parts usually belong to different objects (Roelfsema & Singer, 1998). In the laboratory, contour 

tracing is studied using a task where observers must determine whether two dots lie on the same 

contour in a pattern consisting of two (or more) intermingled contours. A typical finding is that 

the time taken to provide an answer increases monotonically, but not linearly, with the distance 

between the dots on the contour. 

 In their pioneering study, Jolicoeur et al. (1991) devised simple stimuli consisting of a 

set of parallel straight or curved lines to isolate relevant factors contributing to tracing 

dynamics: the distance between the target and distractor contours and the amount of curvature 
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in the curved contours. Their study revealed that (a) the tracing time increases monotonically 

and roughly linearly with the length of the contour, (b) the tracing speed decreases with 

decreased spacing between the target and distractor contours, and (c) the tracing speed 

decreases with increased contour curvature. These findings help explain why the tracing time 

was not a linear function of the distance in studies employing two contours that wiggle around 

each other. In such stimuli, the distance between the target and distractor contours, as well as 

their curvature, vary considerably along the path that needs to be traced. Therefore, in this part 

of the thesis, the modeling efforts will be based on Jolicoeur et al.’s (1991) results. 

 To simulate the properties of mental contour tracing, the F-WTA network was enriched 

with extended lateral connectivity. Hence, the neural model of contour tracing consists of three 

components: The F-WTA network, the contour detection network (CDN), and the L-junction 

detection network (LDN). It was assumed that there were separate F-WTA networks for each 

orientation so that activity spreading in one direction would not jump to other orientations at 

the contour junction. For computational simplicity, only horizontal and vertical orientations 

were employed. Furthermore, it was proposed that F-WTA nodes do not mutually interact 

directly but are engaged in a feedback loop with the same-oriented multi-scale CDN. In other 

words, lateral excitatory interactions in the F-WTA network were multiplicatively gated by the 

CDN’s output.  

 The proposed CDN network model consists of two orientations, horizontal and vertical, 

and four spatial scales: tiny, small, medium, and large, denoted as 1, 2, 3, and 4, respectively. 

The input image is convolved with a set of multi-scale, even-symmetric Gabor filters to 

simulate oriented receptive fields known to exist in the visual cortex (Daugman, 1980; 

Marčelja, 1980). The convolution output is denoted as c-units. The a-units model receives scale-

dependent feedback projections from the F-WTA network with the same orientation preference 

(e.g., horizontal or vertical). The lateral extent of the feedback projections to the a-units scales 

with the size of the receptive field of the corresponding c-units. Furthermore, the a-units output 

is multiplicatively gated by c-units before returning to the F-WTA network. The distinction 

between a-units receiving attentional signals from the F-WTA network and c-units unaffected 

by attention is reminiscent of the distinction between the A- and N-units found in the visual 

cortex (Pooresmaeili et al., 2010). Notably, the role of the CDN is to open or close feedback 

loops between neighboring nodes in the F-WTA network in a scale-dependent manner. 

However, the F-WTA network carries the activity spreading related to attention. 

 Since the interaction between F-WTA and the CDN explains the dynamics of contour 

tracing within a single orientation, the LDN model is designed to explain how contour tracing 
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is engaged in cross-orientation interactions at L-, T-, or X-junctions. The LDN allows activity 

spreading across orientations at L-junctions but not other types of junctions. Empirical support 

for the existence of such corner detectors is provided by Anzai et al. (2007). The LDN 

comprises two e-units exhibiting enhanced response at contour ends and corners and one l-unit 

that detects the superposition of perpendicular e-units. Both types of units are assumed to exist 

only at the smallest spatial scale. Furthermore, e-units receive input from the same-oriented c-

units. The l-unit has two dendrites, each receiving input from a distinct e-unit at the same 

location. The l-unit threshold is set to operate as an AND gate; it is activated only when it 

receives suprathreshold signals from both e-units. Hence, the l-unit selectively responds to the 

L-junction but not the T- or X-junctions. The l-unit output establishes a link between the 

horizontal and vertical F-WTA networks via the same multiplicative gating as that used in the 

CDN. Significantly, the LDN network can be generalized to a model with many orientations so 

that the l-unit receives input from each e-unit on a separate dendrite. 

 A set of computer simulations was performed to illustrate that the proposed model could 

account for the effects of distractor proximity, contour curvature, and object-based attentional 

cueing. Moreover, simulations were performed to show how the F-WTA network handles gaps 

at the contour or contour intersections, solves the spiral problem, and separates occluding 

representation from the occluded object. The model’s robustness was also verified by 

examining the extent to which its behavior is affected by changes in network parameters. 

 

2.1.2.2. The Effect of Distractor Proximity 

 

 Jolicoeur et al. (1991) observed that tracing speed is modulated by the proximity of 

target and distractor contours; the tracing becomes slower as the proximity increases. To 

simulate these findings, we employed an input image consisting of vertical lines horizontally 

separated by a variable number of pixels. The results indicate that the vertical c-units output 

correlated with the contour spacing. Contours were encoded only at the tiny scale (c1-units) 

when the horizontal separation between the contours was only one pixel wide. Scale-dependent 

flanking inhibition of Gabor filters reduced the activation of the c2-, c3-, and c4-units, and scale-

dependent thresholds Ts made these weak activations subthreshold. The exception to this 

inhibitory effect was the c-units positioned at the very edge of the grating. They survived 

thresholding even at larger scales because they received weaker total inhibition. Next, when the 

horizontal separation between the contours was two pixels wide, the c2-units were released from 

inhibition along with the c1-units. Similarly, when the horizontal separation between the 
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contours was three pixels wide, the c3-units were released from inhibition alongside the c1- and 

c2-units. Finally, when the horizontal separation between the contours reached the maximum 

four-pixel width, the c-units enabled contour representation at all four spatial scales. 

 The effect of distractor proximity on vertical F-WTA dynamics was demonstrated by 

presenting snapshots of evolving F-WTA activity taken at five representative time points in 

response to the four input configurations described in the previous paragraph. The snapshots 

were taken at the following five representative time points: spatial cue presentation (t = 300 

ms), cue removal and the beginning of activity spreading (t = 500 ms), enhancement in activity 

spreading along the target contour (t = 600 ms, and t = 800 ms), and the end of the simulation 

(t = 1,500 ms). At the beginning of the simulation, all contours were selected due to the same 

input amplitude. It was not possible to generate tracing within the network automatically. Thus, 

tracing began after applying an external spatial cue in the middle of the image (Crundall et al., 

2008). That is, attention-related activity spreading is not an obligatory process and its 

engagement depends on the task demands (Drummond & Shomstein, 2010; Shomstein & 

Yantis, 2002, 2004). After removing the spatial cue, the network did not return to the initial 

state, where all contours were selected. Instead, neural activity started to propagate from the 

cued location to the end of the contour without spillover to the background. This was a 

consequence of the lateral excitatory interactions mediated by CDN, described earlier.  

It is important to note that the F-WTA network automatically adjusted the tracing speed 

depending on the proximity of distractor contours. Activity spreading was slowest (tracing 

ended at about t = 1,500 ms) when the distance between the contours was one pixel wide and 

fastest (tracing ended at about t = 600 ms) when the distance between the contours was three 

and four pixels wide. In this latter condition, the F-WTA network received input from a-units 

of all scales because of the suprathreshold activity in c-units at all scales. Such multi-scale 

activation increased the size of the integration zone of F-WTA nodes and consequently 

considerably increased tracing speed. Marić and Domijan (2019) emphasized that the model 

implements object-based attention by allowing the neural activity to spread along the entire 

object rather than move along the contour (Houtkamp et al., 2003; Roelfsema et al., 2010; 

Scholte et al., 2001). This was achieved by keeping the old nodes, activated in the earlier tracing 

stages, active with the new nodes appended to the existing contour representation until the end 

of tracing. The retrograde signaling mechanism in the background of these findings prevents 

lateral inhibition among winning nodes, irrespective of their total number. 

 The same simulation of the effect of distractor proximity was also examined from the 

perspective of the vertical F-WTA nodes lying on the target contour using a target-distractor 
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distance of one to four pixels. The nodes positioned on the target contour were 4, 8, 12, and 16 

pixels away from the cued node. The results illustrate the same dynamics described in the 

previous paragraph. The cued location was the only winner when the cue was on, and tracing 

proceeded by the sequential excitation of the connected nodes after the removal of the cue.  

 Finally, simulation results and behavioral data (Experiment 3 of Jolicoeur et al., 1991) 

were compared. Two empirically observed trends were detected in the model’s output. First, 

the tracing time increased monotonically with the distance from the cue to the target location. 

Second, the slope of the tracing time curve increased as a function of the increased proximity 

between the target and distractors.  

 

2.1.2.3. The Effect of Contour Curvature 

 

 The second simulated effect was contour curvature. When the distractor proximity was 

fixed, Jolicoeur et al. (1991) observed that tracing slows as the contour curvature increases. To 

simulate these findings, a low-resolution input image consisting of small horizontal 

displacements of vertical contour segments was employed to emulate the contour curvature. 

That is, the input was the vertical grating with large, medium, and small contour curvatures, or 

straight contours, denoted as A, B, C, or D, respectively. Stimuli with large contour curvatures 

contained contour segments displaced horizontally three times to the right and twice to the left 

to represent a curved line. Similarly, medium curvature contours had two displacements to the 

right and one to the left, and small curvature contours had only one displacement to the right 

and one to the left. Displacements were always made by one pixel. The spacing between the 

contours was kept constant. The results indicate that the vertical c-units output correlates with 

the contour curvature. The stimulus with large contour curvatures produced short contour 

segments that activated only c1-units. In the second condition, the stimulus with medium 

contour curvatures had longer contour segments that activated c2-units and c1-units. In the third 

condition, contour segments were large enough to activate c3-units and smaller spatial scales. 

Finally, when the input was composed of straight contours, all four spatial scales of the CDN 

were activated in parallel. 

 The simulation of the effect of contour curvature on the dynamics of vertical F-WTA 

was illustrated using snapshots of evolving F-WTA activity taken at five representative time 

points in response to the four input configurations described previously. As in the previous 

simulation of distractor proximity, the spatial cue was applied to the top of the contour placed 

in the middle of the input image. The cue enabled the network to behave similarly to a standard 
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WTA network and select only the cued location. Following spatial cue removal, the network 

started to trace contours by selectively amplifying the activity of neighboring units (at about t 

= 500 ms across all rows). Significantly, the results demonstrate that the tracing speed was 

modulated by the c-units response. Activity spreading was slowest (about t = 1,300 ms) in the 

large contour curvature condition and fastest (about t = 800 ms) in the straight contour curvature 

condition.  

 The effect of contour curvature was further examined by illustrating the temporal 

dynamics of vertical F-WTA nodes lying on the target contour with a degree of contour 

curvature ranging from large curves to straight lines. Nodes positioned on the target contour 

were 8, 16, and 24 pixels away from the cued node. At the beginning of the simulation, the cued 

location was the only winner when the cue was present. After cue removal, contour tracing 

proceeded by the sequential excitation of connected nodes. Tracing ended when it reached the 

last pixel of the target contour. This occurred at different time points depending on the contour 

curvature. 

 Finally, a comparison was made between the model’s output and the behavioral data 

(Experiment 1 of Jolicoeur et al., 1991). Again, two empirically observed trends were detected. 

First, the tracing time increased monotonically with the distance from the cue to the target 

location. Second, the slope of the tracing time curve increased as a function of the increased 

contour curvature. That is, contour tracing slowed as contour curvature increased. Interestingly, 

the speed of tracing was generally slower when compared to the previous simulation with the 

same parameter set. This was a consequence of the imperfect alignment of curved contour 

segments with the excitatory part of Gabor filters. Therefore, the c-units were not maximally 

activated, as in the simulation of the effect of distractor proximity. 

 

2.1.2.4. The Effect of Object-Based Attentional Cueing 

 

 Object-based cueing involves temporarily brightening (cueing) one of the contours in 

the grating. In such a task, the cue shortly appears on the target contour, followed by the 

presentation of dots with established connectedness. It is essential to emphasize that the cue 

disappears before the dots appear. Therefore, participants must store the locations of the target 

contour in their short-term memory to use the cue effectively when they attempt to solve this 

task. McCormick and Jolicoeur (1992) investigated the relationship between attentional cueing 

and mental contour tracing and discovered that an object-based cue substantially reduced 
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tracing speed. The results suggest that all segments of the cued contour were selected together; 

therefore, no tracing was required.  

 In the simulation of the effect of object-based attentional cueing, we investigated the 

activation of the vertical F-WTA network in response to a temporary increase in the input 

amplitude of the target contour. In the first simulation, when the cue duration was 200 ms F-

WTA successfully selected the cued contour and stored it in working memory. In the second 

simulation, when the cue was presented for a much shorter interval (50 ms), as in McCormick 

and Jolicoeur (1992) study, F-WTA failed to segregate the target contour from distractors and 

returned to the initial state, in which all contours were selected together. In this simulation, the 

input amplitude was kept the same as in the previous simulation. Finally, in the third simulation, 

when the cue amplitude was increased, the network regained its ability to segregate the target 

contour from distractors over the cue duration of 50 ms. 

 

2.1.2.5. Other Tracing Effects 

 

 Gaps in the contour may disrupt tracing (Ullman, 1984). Therefore, it is important to 

establish the degree to which the proposed model is immune to such disruption. To address this 

issue, we ran a simulation with a vertical grating as the input image (stimuli similar to those 

used in the simulation of the effect of distractor proximity) to illustrate how the F-WTA network 

manages one-pixel and two-pixel gaps in the contour. The one-pixel gap was placed near the 

tracing starting point, and the two-pixel gap was placed farther away from the cued contour. 

The results indicate that when the contours were closely spaced, the activity enhancement in F-

WTA could not cross the one-pixel gap. In the condition with larger spacing among the 

contours, the activity enhancement successfully crossed the one-pixel gap. However, it became 

fixed at the second, larger gap. Finally, when the spacing between contours was increased, the 

enhancement activity in F-WTA crossed both gaps and completed the spatial representation of 

the target contour. Significantly, F-WTA could cross even wider gaps. However, this would 

require the recruitment of larger spatial scales (e.g., c4-units or lager). 

 Thus far, we have considered only simple stimuli such as gratings. However, to be useful 

in everyday situations, tracing should be applied to complex patterns composed of vertical and 

horizontal contour segments. We employed the famous spiral problem (Minsky & Papert, 1988) 

to demonstrate how the F-WTA network solves it. The input pattern was composed of one or 

two spirals. The outputs of vertical and horizontal c-units were combined in a single image by 

computing their maximum at each pixel. This maximum was displayed in the image. As in the 
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previous simulations, the external spatial cue was applied and then withdrawn to initiate tracing. 

In the simulation where the input pattern comprised of one spiral, the activity enhancement 

progressively spread along the cued contour from t = 500 ms until the end of the contour, shortly 

before t = 4,000 ms. The steady-state activity of F-WTA suggested the presence of a single 

connected spiral. Conversely, in the simulation where the input pattern was composed of two 

spirals, the activity enhancement progressed similarly, but reached the end of the cued contour 

before t = 2,000 ms. The steady-state activity of F-WTA suggested the presence of two 

separated spirals. Notably, activity spreading switched between perpendicular orientations at 

the corners of the spirals due to the activation of l-units. 

 The next question we addressed was how the network would trace patterns with X- or 

T-junctions, (i.e., contour intersections). Without orientation-specific mechanisms that 

constrain tracing, the tracing would spill over in all directions. Human observers tend to choose 

the direction that requires the slightest change in orientation, closely related to the well-known 

Gestalt principle of good continuation (Brooks, 2014). Hence, we designed l-units to respond 

to the L-junction but not the X-junction.  

The simulation of contour tracing across X-junctions demonstrated that the F-WTA 

network spreads activity enhancement according to the Gestalt principle of good continuation. 

The input consisted of two intersecting squares, and the cue was applied to the upper left square. 

Following cue removal, the activity enhancement in the horizontal F-WTA network began to 

spread simultaneously to the left and right from the cued location. The vertical F-WTA network 

could not exhibit activity spreading at the cued location, as it did not receive the input from the 

vertical c-units. However, enhanced activity in the horizontal F-WTA network crossed L-

junctions at the corners of the square and activated the vertical F-WTA network, which 

continued to propagate enhancement in the vertical direction. Next, the activity enhancement 

passed through X-junctions. Significantly, there was no activity spillover to the horizontal F-

WTA because the l-unit was inactive. At the end of the simulation, both networks reached a 

steady state with the active representation of the cued square.  

 Next, the simulation of the contour tracing across T-junctions revealed that the F-WTA 

network correctly separated the representation of the occluding from the occluded object. 

Object is selection depends on the location of the applied. The same effect was observed in the 

simulation described in the previous paragraph. When the occluding object was cued, tracing 

proceeded along its contour without spillover to the occluded object contour at the T-junction 

and vice versa when the occluded object was cued. Interestingly, although the F-WTA network 
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lacked the capacity to represent different depth planes for occluding and occluded objects, it 

detached them correctly during tracing. 

 

2.1.2.6. Discussion 

 

The model of object-based spatial selection developed in this study shares similarities 

with the zoom lens model proposed by McCormick and Jolicoeur (1991, 1994), developed to 

account for behavioral findings regarding contour tracing. According to the zoom lens model, 

the attention spotlight narrows or widens its radius depending on the desired spatial resolution. 

McCormick and Jolicoeur (1991, 1994) identified five component processes required of a 

contour tracing operator: 1) Contour detection, 2) zooming, 3) determining whether the second 

contour segment has been located, 4) computing the direction of the next attentional shift, and 

5) shifting to a new region. Since the zoom lens model is purely descriptive, the present model 

of object-based spatial selection provides the specific implementation of neurocomputational 

mechanisms underlying described attentional processes. The c-units implement the first 

process, while the multiplicative gating of c- and a-units implements the second process. The 

final three processes are intrinsic to the F-WTA network; that is, F-WTA automatically finds a 

path to spread activity along the contour without spilling over to the empty space around it. In 

addition, the LDN regulates activity spreading along the L-, X-, and T-junctions and prevents 

spillover to distractor contours. 

The F-WTA network shares features with the filling-in model of brightness perception 

(Grossberg & Todorović, 1988). In this model, a neural substrate of surface perception is the 

diffusion of electrical activity among neighbors, which allows brightness or color signals to fill 

in the interior of a surface because the diffusion is blocked at the surface borders. However, 

diffusion spreads slowly without adjusting the speed of activity spreading. It cannot sustain 

activity in the short-term memory related to the target object after the input vanishes. In contrast, 

the F-WTA network solves these problems by incorporating the multiplicative gating of 

excitatory interactions and self-recurrent collaterals. In addition, F-WTA is sensitive to new 

inputs and the abrupt visual onset of new objects, as demonstrated in Marić and Domijan 

(2018a). Dendrites prevent the saturation node activity, so F-WTA smoothly transitions from 

old to new inputs. 

Finally, the proposed F-WTA network has several limitations. One problem is that its 

pattern separation capability is too strong since the distractor contour was suppressed to zero, 

while the target contour remains active as it was presented alone. However, neurophysiological 
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data provided by Roelfsema et al. (2003, 1998) suggest that the activity difference between 

neurons encoding target and distractor contours is relatively small. Nevertheless, the authors 

tested only neurons in V1. Bogler et al. (2011) observed that the PPC is involved in WTA 

computation in a way that combines feature selectivity with spatial attention to compute a 

feature-specific priority map (Veale et al., 2017). Consequently, the PPC may contain a 

representation of the target contour similar to the,F-WTA output. It is also possible that F-WTA 

could be located in the pulvinar nucleus of the thalamus (Zhou et al., 2016). Irrespective of its 

exact anatomical location, we propose that the F-WTA network is a part of the attentional 

network dedicated to target selection and distractor filtering that may operate independently of 

the network dedicated to visual perception.  

In summary, this study demonstrates that when the F-WTA network is embedded in a 

more extensive multi-scale architecture for contour and L-junction detection, it is capable of 

the attentional labeling of connected image parts. The dynamics of this labeling are consistent 

with the empirically observed dynamics of mental contour tracing. The proposed model offers 

a neural interface for the interaction between visual perception and cognition and implementing 

the incremental grouping of image elements. These findings suggest that the second part of the 

first problem of this thesis has been successfully addressed. 

 

 

2.1.3. Literature Review of the Cognitive Penetrability of Vision 

 

 The nature of the relationship between visual perception and cognition remains an open 

and significant question, not only in the field of psychology but also in neuroscience, mind 

philosophy, artificial intelligence, psychiatry, and aesthetics. The assumption that visual 

perception is cognitively penetrable implies that cognitive processes such as thinking and 

reasoning, as well as expectations, beliefs, emotions, and values, directly influence and change 

the content of visual perception. In terms of information processing theory, top-down processes 

can directly influence the bottom-up detection of sensory information (Palmer, 1999). 

However, if the visual system is cognitively penetrable, cognition can interfere with the primary 

vision task, creating an accurate mental representation of the observers’ environment. The 

extents to which vision is functionally independent of cognition and emotions and behavior is 

coordinated with physical features of the external environment are theoretically and empirically 

significant questions that require new theoretical approaches to solve them. Hence, Marić and 

Domijan’s (2018b) review paper aimed to offer an overview of theoretical arguments for and 
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against the cognitive penetrability hypothesis, as well as empirical findings to support or refute 

it. 

 Neuroscientific data indicate that vision comprises a set of parallel and hierarchically 

organized neural networks dedicated to analyzing different features of visual stimuli such as 

color, motion, and orientation (Lennie, 1998). Therefore, when analyzing the problem of 

cognitive penetrability in vision, it is necessary to consider neuroscientific findings regarding 

the interactions between the cortical areas involved in vision. Visual signals travel from the 

retina to the LGN. Visual pathways are further segregated into magnocellular and parvocellular 

streams in the first visual receiving area: the primary visual or striate cortex (V1) (Callaway, 

2005). Projections from the striate cortex to extrastriate visual areas (V2, V3, V4, and MT) can 

be further divided into two functionally segregated visual pathways or streams: a ventral stream 

and a dorsal stream. The ventral stream processes information about object identity, whereas 

the dorsal stream processes information about object location and contributes to visually guided 

movements (Goodale & Milner, 1992; Ungerleider & Mishkin, 1982). The ventral stream 

projects toward the ventral temporal cortex, and the dorsal stream projects toward the parietal 

lobe. The functional separation between streams is not strict, and there is evidence of interaction 

between them (Bell et al., 2014). 

The standard model of the neural basis of vision relies on the assumption that the visual 

system is a hierarchical structure. Visual processing starts with the representation of elementary 

features (e.g., color, motion, orientation) at the lower levels of the hierarchy (V1) and continues 

with their generalization and integration into more complex shapes, categories, and objects at 

the higher levels of the hierarchy, such as the inferotemporal cortex (IT). However, visual 

processing is much more complex than a hierarchical or feedforward view suggests since there 

is a dense network of interconnected feedforward, lateral, and feedback pathways (Felleman & 

Van Essen, 1991). Feedback projections have been observed at all stages in the visual cortical 

hierarchy and are more numerous than the feedforward connections (Ahissar & Hochstein, 

2004; Gilbert & Li, 2013; Hochstein & Ahissar, 2002). These observations suggest that visual 

processing is bidirectional and subject to top-down influences rather than strictly hierarchical. 

Feedback connections have different anatomical and physiological properties than 

feedforward connections (Markov et al., 2013; Bastos et al., 2015; Michalareas et al., 2016). 

Macknik and Martinez-Conde (2009) suggested that feedback modulates neural activity in 

visual perception rather than driving it and has an established significant role in attentional 

mechanisms. They argued that the primary role of feedback connections is to facilitate and 

suppress feedforward signals as a function of attentional load.  
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Pylyshyn (1999) introduced the concept of the cognitive impenetrability of visual 

perception starting from Fodor’s (1983) modularity of the mind hypothesis. According to the 

Fodorian view of mental architecture, the human mind is organized much like computer 

architecture with a central processor and a set of specialized modules responsible for executing 

specific tasks. The modules include, for example, vision, audition, and motor control. Modules 

operate independently of each other and the central processor to perform their dedicated roles 

efficiently. They cannot influence each other. The central processor only receives the module 

outputs and cannot affect their internal operations. Consequently, computations inside the 

module are concealed or informationally encapsulated from cognition. Pylyshyn (1999) argued 

that visual perception is a Fodorian module with fixed, innate architecture. Its operation is based 

on a domain-specific set of principles, fundamentally different from the principles governing 

the central processor’s operations, which implement general cognitive functions, such as 

thinking and reasoning.  

Part of visual processing is cognitively penetrable and related to object recognition. 

Thus, Pylyshyn (1999) distinguished cognitively penetrable visual processes from other, not 

cognitively penetrable, processes. Following Marr (1982), Pylyshyn (1999) referred to the part 

of visual perception encapsulated from cognition as early vision and visual perception that is 

susceptible to cognitive influences as late vision. Early vision is defined functionally without 

reference to its anatomical locus, which is not precisely known. It encompasses processes from 

light registration in photoreceptors, through the analysis of perceptual features, to the 

computation of tridimensional (3-D) representations of the surfaces of objects in the 

environment. Semantic information begins to influence visual processing only after early vision 

determines the 3-D structure of the environment by building representations adequate for object 

recognition, as part of late vision. 

 

2.1.3.1. Arguments for the Cognitive Impenetrability of Vision 

 

 In addition to the theoretical arguments reviewed above, Pylyshyn (1999) has offered 

several empirically grounded arguments for the cognitive impenetrability of visual perception. 

First, knowledge about the existence of perceptual illusions (such as the Müller-Lyer illusion) 

does not make them disappear. That is, previous knowledge that our visual perception does not 

precisely match the physical situation in the environment still does not alter the content of our 

visual experience.  
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Second, many regularities in visual perception depend solely on the visual input 

properties and are automatically extracted from them. The principles of visual perception differ 

from the principles of thinking and reasoning, that is, of the central processor. For example, 

Gilchrist et al. (1999) identified the rule known as the highest-luminance-as-white by which we 

assign a white color to the surface that emits the largest amount of light in a given stimulus. 

This rule cannot be applied. Furthermore, it does not make sense in domains outside visual 

perception. In addition, it is not a general rule according to which the central processor can 

operate.  

Third, neuropsychological studies have observed the partial independence of vision and 

other cortical functions. For example, individuals suffering from visual agnosia (i.e., an 

impairment in object recognition) do not show simultaneous deficits in general cognitive 

functioning (Farah, 1990). Conversely, individuals suffering from deficiencies in reasoning and 

thinking, in principle, do not show concurrent impairments in visual perception.  

Fourth, empirical evidence supporting the penetrability of vision can be reinterpreted so 

that top-down modulations affect a post-perceptual stage of processing or directing spatial 

attention operating before early vision. For example, knowledge about the location of an 

interesting object in the visual scene can influence the way spatial attention is directed before 

early vision starts to encode the visual scene. In addition, the knowledge can also affect 

decision-making processes occurring after the stimulus encoding in early vision is completed. 

 Pylyshyn’s arguments against the penetrability of vision were discussed and elaborated 

upon by Raftopoulos (2009, 2014). Raftopoulos (2009, 2014) focused on electrophysiological 

findings regarding the signal flow speed through the visual system to clearly determine the 

temporal boundary between early and late vision (Lamme, 2003; Lamme and Roelfsema, 2000; 

Roelfsema, 2005). According to these findings, visual representation of stimuli is created in 

three processing steps. The first step occurs within the first 100 ms after stimulus onset when 

signal transmission progresses from the retina through the visual cortical areas to the IT cortex. 

This signal transmission is unconscious and resistant to feedback from higher-level areas in the 

visual hierarchy. Therefore, it is considered a purely bottom-up form of information 

transmission in the visual cortex. In the second step, occurring about 120 ms after stimulus 

presentation, the early visual areas and higher extrastriate areas engage in local recurrent 

processing, necessary for the conscious visual experience. Raftopoulos (2009, 2014) argues that 

the first two steps are processes corresponding to Marr's concept of early vision and not directly 

influenced by cognition. That is, signal transmission during early vision is not affected by top-

down signals produced in cognitive areas but restricted within the visual areas of the brain. 
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Raftopoulos (2009) emphasized that only the third step of visual processing, occurring between 

150 and 200 ms after the stimulus presentation, is cognitively penetrable. In this step, signals 

from the frontal and parietal areas and mnemonic circuits in the hippocampus begin to modulate 

perceptual processing in the visual cortex. 

 

2.1.3.2. Arguments for the Cognitive Penetrability of Vision 

 

 The concepts of the cognitive impenetrability of vision and the modularity of mind run 

contrary to the New Look movement in perception and the experimental findings that support it 

(Bruner, 1957). According to this view, values and needs affect all levels of perception and 

determine how we perceive the environment. Since perception is an inferential process, it can 

be thought of as a form of problem solving. The input registered on the retina is impoverished 

and ambiguous. In a sense, raw sensory information represents a problem to be solved. The 

problem of finding the best interpretation of the input image is solved by supplying top-down 

information in the form of hypotheses or predictions about the likely causes of the registered 

sensory information. From these considerations it follows that there is no real distinction 

between perception and thought (Bruner, 1957). 

 Recently, the New Look movement regained its popularity in part because of the 

development of new theoretical constructs such as predictive coding and Bayesian models of 

perception (Clark, 2013; Friston, 2010; Hohwy, 2013; Lupyan, 2015a; O'Callaghan et al., 2017; 

Vetter & Newen, 2014). Predictive coding is a biologically and computationally plausible 

description of information processing in the brain. The central hypothesis of predictive coding 

is that, during visual perception, the brain generates top-down predictions derived from an 

internal model of the environment. Predictions facilitate, guide, and constrain the processing of 

incoming sensory input (Friston, 2010; Rao & Ballard, 1999). The internal or generative model 

of the environment is built from experiences stored in memory, contextual associations, and 

sensory information arriving from other sensory modalities. Hence, it is essential to emphasize 

that we observe objects in the typical conditions in which they appear with other objects, and 

their cooccurrence allows us to learn the associations between them. Contextual associations 

then become a rich source of information that aids the process of object recognition (Bar, 2004). 

An important implication of predictive coding is that vision is an interactive, two-way process 

merging bottom-up and top-down signals. In other words, the brain never perceives the 

environment as a raw sensory image. Instead, it always starts from an assumption about what 
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the environment might look like. Therefore, the predictive coding model is a new theoretical 

formulation of the cognitive penetrability of visual perception. 

 Marić and Domijan (2018b) also reviewed neuroscientific evidence favoring cognitive 

penetration in vision. For example, Vandenbroucke et al. (2016) employed functional magnetic 

resonance imaging (fMRI) to demonstrate that object knowledge can create expectations that 

alter activity in visual cortical areas representing elementary perceptual features, such as color 

and shape. They decoded brain signals evoked by color-selective cortical areas during the 

perception of achromatic objects with diagnostic colors, such as a banana or tomato. Object 

knowledge modified the early visual areas; it penetrated the cortical area V4 involved in color 

perception. The results suggest that observers indeed perceive a typical color (yellow) while 

observing gray banana. In addition, neuroimaging evidence suggests that social and emotional 

knowledge can modulate visual processing.  

 A detailed overview of several behavioral studies suggesting cognitive penetration in 

vision was provided by Firestone and Scholl (2016). Marić and Domijan (2018) focused their 

review on the most controversial studies motivating discussion on the methodological problems 

arising in studies of CPV. For example, Bhalla and Proffitt (1999) examined the relationship 

between conscious slant perception and an individual’s physiological potential. In four 

experiments, they demonstrated that hills appeared steeper to those who were encumbered by a 

heavy backpack, fatigued, of low physical fitness, or elderly and/or in declining health. 

Similarly, Witt et al. (2004) established that perceived distance was a function of actual distance 

specified by optical variables, the perceiver's intention to perform the action, and the effort 

associated with the intended action. They concluded that distance perception combines the 

perceived geometry of the environment with an individual’s behavior goals and body’s potential 

to achieve them. Hence, if the perceiver intends to walk to a target, they will see the distance in 

terms of the effort required to reach it. Furthermore, following glucose consumption after 

starvation, the hill slant was perceived to be less steep (Schnall et al., 2010), and distances were 

perceived to be shorter (Cole et al., 2013) than after non-caloric sweetener consumption.  

 Cognitive and emotional effects on visual perception are not limited to perception of 

spatial features but extend to brightness and color perception. Banerjee et al. (2012) explored 

whether recalling positive or negative concepts such as evil (exemplified by unethical deeds) 

and goodness (exemplified by ethical deeds) would influence perceived room brightness. The 

results reveal that compared to participants in the ethical condition, the participants in the 

unethical condition judged the laboratory room to be darker. Moreover, participants who 

recalled their past unethical deeds preferred products that would make the room brighter and 
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consequently reduce the negative feelings associated with darkness. Along the same line, Song 

et al. (2012) discovered that individuals judged smiling faces as brighter than frowning faces. 

In four studies, the authors demonstrated that this effect appeared regardless of the type of 

assessment (a binary choice task or an absolute judgment task) and the type of stimuli 

(schematic faces or real faces). 

 

2.1.3.3. Methodological Aspects of Cognitive Penetrability of Vision Research 

  

 The results that inspired the New Look movement were not replicated in later studies 

identifying and controlling for several intervening variables, suggesting insufficient 

experimental control and a lack of methodological rigor in early attempts to establish evidence 

for CPV. Firestone and Scholl (2016) argue that similar methodological problems arise in 

modern research. The authors provided a detailed analysis of the methodology of studies 

supporting the penetrability of vision. They concluded that the effects observed in these studies 

could be explained without invoking the influence of cognition or emotions on vision. Their 

most significant contribution highlighted the need to improve scientific methodology and 

control relevant variables in the study design. In particular, they identified six methodological 

pitfalls precluding any firm conclusion regarding CPV. Future studies must address these issues 

before claiming to find evidence for the cognitive penetration of vision. A short description of 

each pitfall follows. 

 The first pitfall is an overly confirmatory research strategy. In general, the experimental 

hypothesis can be tested in two ways: finding an effect consistent with the theory and the 

absence of an effect when the theory predicts it. Cognitive penetrability studies have focused 

exclusively on the first approach. Consequently, Firestone and Scholl (2016) suggested that 

many potentially significant findings are missing from the literature and may help resolve the 

penetrability debate. A specific example of the distinction between confirmatory and 

disconfirmatory hypotheses is observed in Firestone and Scholl (2014), who were inspired by 

an interesting anecdote in art history known as the El Greco fallacy. El Greco was a renowned 

painter known for his tendency to paint unusually elongated human figures. Art historians 

hypothesized that, based on this tendency, the painter experienced astigmatism, which stretched 

his perceived environment along the vertical axis. However, if he really experienced the world 

in an elongated way, he would have also chosen elongated canvases so that traces of the 

assumed distortions would not be visible in the paintings. However, this was not the case as he 

used similar canvases to other artists of his time. Thus, it is more likely that the elongated 
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figures in his paintings are an element of his painting style and not distortions of his perception 

(Anstis, 2002; Firestone, 2013).  

A similar error can occur when interpreting findings on the top-down effects of vision. 

For example, Firestone and Scholl (2014) demonstrated that the effects of action capability on 

spatial perception (Stefanucci & Guess, 2009) and emotional valence on lightness perception 

(Banerjee et al., 2012) appeared in conditions where they should not. For example, when 

participants made lightness judgments based on a lightness scale (selecting a shade of gray from 

a range) instead of a numerical-report scale, they still indicated differences in lightness 

judgments between positive and negative emotions. This was the case even though any 

perceptual distortion should be negated because the lightness scale is present in the room where 

the lightness is being judged. That is, any darkening (or lightening) of the room that purportedly 

arises from emotional states (positive vs. negative) should also darken (or lighten) the scale on 

which the judgments are made. Therefore, no lightness difference should be observed, 

suggesting that the reported effects are not perceptual but arise at some post-perceptual 

processing stage (e.g., judgment or decision-making). Consequently, Firestone and Scholl 

(2016) recommended that both confirmatory and disconfirmatory research strategies be applied 

concurrently to present a strong case for CPV. 

 The second pitfall is the failure to distinguish perception from judgment. Since it is 

difficult to draw the line between judgment and visual perception, the results supporting 

cognitive penetrability could reflect top-down effects on judgment rather than vision. 

Therefore, future research must consider the difference between vision and judgment and 

empirically separate them to avoid misinterpreting the findings (Firestone & Scholl, 2016). Witt 

et al.’s (2004) results on the effect of physical effort on distance perception exemplify this 

shortcoming. 

The third pitfall refers to the demand characteristics of the experimental task and 

response bias. Vision experiments are conducted in controlled laboratory settings that allow for 

the maximal control of confounding variables. However, experiments also involve social 

interaction between participant and experimenter. Participants are not passive recipients of task 

instructions. They actively try to understand the experiment’s true purpose by observing the 

demands imposed by the experimental task. They also try to behave as good participants and 

please the experimenter by adjusting their responses along the hypothesis they assume is being 

tested. Therefore, task demands pose a significant threat to the experiment’s internal validity 

(Shaughnessy et al., 2012). To address this threat, researchers must invest a great deal of effort 

to hide all signs indicating the study aim. Klein et al. (2012) cautioned that many contemporary 
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studies pay insufficient attention to the problem of demand characteristics, making discovering 

the true effects challenging. This limitation also contributes to the problem of replicability in 

psychological research.  

An example of a study where demand characteristics played a significant role in 

contaminating the research findings is Bhalla and Proffitt (1999). The authors demonstrated 

that wearing heavy backpacks led participants to overestimate the steepness of a hill. This 

finding suggests that kinesthetic information provided by the muscles modulates the perception 

of slant in accordance with the cognitive penetrability hypothesis. However, the effect of the 

backpack could have merely reflected experimental demands because it was evident to the 

participants which hypothesis was being tested. When the relationship between the backpack 

and the perceptual task was made less obvious by inventing a cover story that directed 

participants’ attention to other aspects of the task, the effect of the backpack on slant perception 

disappeared (Durgin et al., 2009). 

The fourth pitfall is low-level differences in stimulus that refer to the manipulation of 

the stimuli used across experimental conditions. For example, the intended top-down 

manipulation could be confounded with the changes in the low-level visual features of stimuli 

to drive the perceptual differences across conditions. Firestone and Scholl (2016) suggested that 

it is essential to separate high-level from low-level variables to preserve the high-level factor 

while eliminating the low-level factor, or vice versa. For example, Firestone and Scholl (2016) 

replicated Levin and Banaji’s (2006) finding that Black faces look darker than White faces, 

even when matched for mean luminance. Firestone and Scholl (2016) used blurred versions of 

the face stimuli to eliminate race information while preserving low-level differences in the 

images. After blurring, the vast majority of observers claimed that the two faces were of the 

same race. Nevertheless, they judged the blurry image of the Black face to be darker than the 

blurry image of the White face. This finding implicates the action of a low-level variable rather 

than a high-level variable such as race. 

 The fifth pitfall concerns peripheral attentional effects. Changing what is seen by 

selectively attending to different locations is similar to changing what is seen by moving the 

eyes. In both cases, the observer chooses the vision input. However, in both cases, the influence 

of attention is entirely independent of the reason for directing attention; that is, attention is not 

sensitive to the content of that intention or belief. Thus, such influence cannot be considered 

the cognitive penetration of vision (Firestone & Scholl, 2016). Conversely, Lupyan (2017a) 

argued that several other forms of attention, such as feature-based attention or attention to 

semantic categories, change the content of visual perception in a way that changes the object’s 
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appearance. In doing so, he offered several demonstrations in which additional information 

about the image dramatically changed perceptions about it. Therefore, future research must 

control or measure the effect of directing spatial attention to distinguish it from other top-down 

effects. Furthermore, it is essential to determine whether feature-based attention or attention to 

semantic categories has a different impact on visual perception when compared to spatial 

attention. 

 The final, pitfall is failing to consider the effect of memory on recognition. In many 

studies, the effect of cognitive penetration is confused with stimuli recognition. For example, 

studies indicate that assigning linguistic labels to simple shapes speeds up the reaction time in 

visual searching and other recognition tasks (Lupyan & Spivey, 2008; Lupyan et al., 2010; as 

cited in Firestone & Scholl, 2016). However, in addition to visual processing, recognition 

involves the memory necessary to compare a given visual stimulus with the remembered 

representation. Since visual recognition incorporates both perception and memory, a 

recommendation for future research is to distinguish between these two processes (because 

memory effects have no implications for the nature of perception) to demonstrate the effect of 

cognitive penetration on vision (Firestone and Scholl, 2016). 

 

2.1.3.4. Discussion 

 

In summary, it can be concluded that no consensus has been reached regarding whether 

cognition and emotions affect visual perception. Further theoretical work is required to clarify 

the role of feedback connections in the visual cortex in generating the top-down effects 

observed in behavioral studies. In contrast to predictive coding and Bayesian models, 

Grossberg's (2013) ART offers an alternative view of feedback connections and their role in 

cortical information processing. From this standpoint, feedback connections do not alter 

bottom-up input. Instead, they help stabilize learning and memory because they read out learned 

expectations that are compared with bottom up input. However, it is not clear how this theory 

would explain findings supporting CPV. Therefore, further theoretical work is needed to clarify 

the processing stage at which the interaction between perception and cognition occurs within 

ART.  

Future empirical studies must consider the recommendations proposed by Firestone and 

Scholl (2016) to distinguish the actual effects of cognition and emotions on vision from the 

effects of confounding factors present in experiments. Even if the stringent control of 

confounding variables is achieved, the question remains regarding the extent to which it is 
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possible to separate visual perception from subjective interpretations and judgments often 

conflated in a typical experiment. This question provokes divided opinions (Durgin, 2017; 

Schnall, 2017). So far, there are no robust arguments for the penetrability of vision since almost 

all behavioral findings supporting this idea can be attributed to the action of non-perceptual 

factors (judgment, memory, recognition, and the allocation of attention) arising from 

insufficient experimental control. Therefore, whether it is possible to design an experiment in 

which the direct influence of cognition and/or emotions on visual perception are unambiguously 

isolated remains an open question. 

   

 

2.1.4. A Model of the Interaction Between Color Perception and Color Memory 

 

 In their review paper, Marić and Domijan (2018b) suggested that there are sufficient 

grounds to defend the thesis that vision is cognitively impenetrable. However, how vision 

protects itself from top-down influences in the face of feedback connections in the visual 

hierarchy remains an open question. Marić and Domijan (2020) adopted a theoretical 

framework of the ART to demonstrate that it is possible to regulate and constrain top-down 

influences to prevent them from altering the content of visual perception. To reinforce this 

argument, Marić and Domijan (2020) developed the color ART circuit to explore how prior 

knowledge affects color perception. The model explains how traces of erroneous expectations 

about incoming color are eventually removed from color perception. However, their transient 

effect may be visible in behavioral responses or brain imaging. This study demonstrates that 

the color ART circuit is a specific computational implementation of the predictive coding 

system that is not penetrable by top-down influences (see Appendix D for the full paper and 

Appendix E for supplemental materials containing the MATLAB code to reproduce all results). 

 

2.1.4.1. Introduction 

 

 The answer to the question of whether cognitive processes can directly alter the content 

of visual perception is not yet clear. One perspective holds that there is complete independence 

of vision and cognition based on the computational role of vision is to provide an accurate 

representation of the environment. This is known as the cognitive impenetrability of visual 

perception (Pylyshyn, 1999; Raftopoulos, 2014). An opposing perspective proposes the 

continuity of visual perception and cognition based on the idea that cognition provides 
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contextual information that can resolve contradictory sensory evidence or fill in missing parts. 

This position arises from predictive coding models (Clark, 2013; Friston, 2010; Hohwy, 2013, 

2017). 

To demonstrate that massive feedback connections in the visual cortex do not imply 

cognitive penetration of visual perception, Marić and Domijan (2020) adopted the ART 

proposed by Grossberg and colleagues as a guiding theoretical framework. ART is an 

alternative theoretical framework that addresses predictions and top-down expectations 

differently from predictive coding models. ART’s novelty detection mechanism is responsible 

for protecting perception from top-down effects. Grossberg and colleagues emphasized that the 

cognitive impenetrability of visual perception is a natural consequence of brain mechanisms 

designed to prevent interference between new inputs and old memories. Top-down signals 

carrying predictions can influence only the early stages of processing in the ART circuit, that 

is, before resonance occurs. Once resonance is established, no further cognitive influence is 

possible because the resonant state represents the conscious experience of recognizing a 

familiar input pattern. In addition, the ART circuit generates impenetrable percepts since it is 

an attractor network that generates a phenomenon known as hysteresis. An attractor is a stable 

network state that is resistant to change. In other words, the network activity cannot leave this 

state once it is drawn to it, so the network is resistant to external perturbations. Hysteresis is a 

consequence of a strong excitatory loop between the F1 and F2 layers. This is also the reason 

why the ART network requires an external reset in the first place (Francis et al., 1994).  

 Regarding color vision, Marić and Domijan (2020) proposed that the conscious 

experience of color arises from the resonance between the color category (hue) encoded in the 

F2 layer and the specific pattern of color-opponent activation registered in the F0 layer. In other 

words, each discernible color requires a separate F2 node akin to a color grandmother cell 

(Bowers, 2009, 2017). The vigilance parameter, which controls the match between bottom-up 

and top-down inputs, must be set to a high value to discriminate between many hues. If the 

prediction is disconfirmed by mismatching bottom-up activity, it cannot participate in the 

conscious perceptual experience by virtue of the orienting subsystem. Furthermore, Marić and 

Domijan (2020) argued that the behavioral and neural data supporting CPV capture transient 

neural activity that occurs during the processing of erroneous expectations. The ART circuit 

requires some time to complete its processing cycle, especially in the case of mismatch 

computation. Consequently, the ART response reflects expectation rather than perception in the 

early processing stages. This notion fails to support the cognitive penetrability of visual 

perception because the ART circuit eventually finds the best possible hue category that matches 
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the bottom-up input. This is signaled by the resonance between F1 and F2 layers, and resonance 

corresponds to the conscious experience of seeing a color (Grossberg, 2017). 

Numerous studies claim to support CPV. Since it would be challenging to address all of 

them, Marić and Domijan (2020) focused on color perception. Several findings suggest that 

knowledge about a typical color associated with an object affects perceived color. Hansen et al. 

(2006) asked participants to adjust the color of natural or artificial objects to neutral gray. They 

discovered that achromatic adjustments of objects typically associated with one so-called 

intrinsic color (e.g., tomato, broccoli, banana) were biased toward complementary colors. For 

example, participants adjusted bananas to be slightly bluish. This process is known as the 

memory color effect (Olkkonen et al., 2008, Witzel, 2016). It is explained as a consequence of 

retrieving the of object’s typical color from memory. Retrieval further creates a weak perceptual 

experience that forces participants to choose a complementary color to offset the effect of the 

retrieved intrinsic color. Lupyan (2015b) provided further compelling evidence for the 

cognitive penetrability of color perception. He reported that adapting to objects with intrinsic 

color (e.g., a tomato) creates stronger afterimages (more vivid color) than adapting to arbitrarily 

colored objects (e.g., a car). When applied to natural images, this effect is known as the Spanish 

castle illusion. Functional neuroimaging evidence also suggests that it is possible to decode 

memory color from V4 activity when participants view an achromatic image of an object with 

intrinsic color (Bannert & Bartels, 2013). Marić and Domijan (2020) demonstrated that it is 

possible to simulate the memory color effect and Spanish castle illusion within the ART circuit, 

that is, within a computational architecture designed to protect perception from cognitive 

influences.  

The model consists of four components: color pre-processing, the color ART circuit, 

feedback projections from the inter-ART associative map, and color working memory. In the 

first stage, color pre-processing, we simulated several processes occurring before the color ART 

circuit started to encode hues. Marić and Domijan (2020) assumed that this stage computes the 

ratio between the activation of the single cone and the total cone output as L/(L+M) or 

M/(L+M). This is achieved by divisive inhibition, which has several advantages (Foster, 2011; 

Hansen & Gegenfurtner, 2009; Hong & Tong, 2017; Seymour et al., 2016; Smithson, 2005) 

that are discussed in detail in Appendix D. We focused on the red-green opponency only to 

simplify the model. To account for the Spanish castle illusion, we needed an additional 

processing component capable of generating afterimages. This was achieved by incorporating 

transmitter habituation or synaptic depression in cone-opponent channels. Transmitter 

habituation refers to a reduction in the amount of available transmitter in response to the 
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sustained stimulation of presynaptic sites. When transmitter habituation is embedded into a 

competitive circuit with two opponent pathways, it acts as a gate that shifts the competitive 

balance toward the unhabituated pathway (Francis, 2010; Grossberg, 1980).  

The color ART circuit was based on the real-time implementation of the fuzzy ART 

algorithm (Carpenter et al., 1991). Pre-processing, described in the previous paragraph, leads 

to the activation of the F0 layer. The F1 layer computes a fuzzy intersection between the bottom-

up input from the F0 layer and a read-out of top-down adaptive weights arriving from the F2 

layer. Layers F0 and F1 consist of cone-specific nodes, and the F2 layer consists of nodes 

encoding color categories (i.e., hue cells). Hue cells selectively respond to the activation pattern 

across L and M opponent input occurring across F1 nodes. The F2 layer is modeled as a WTA 

network that chooses the node receiving maximal input from the F1 layer and inhibits all other 

nodes. In this way, the F2 layer transforms the linear response of cone-opponent input found in 

V1 into a non-linear color-tuned response observed in the globs of the posterior IT (Bohon et 

al., 2016; Conway, 2009; Conway et al., 2007; Zaidi et al., 2014). When the selected hue node 

in the F2 layer resonates with the F1 layer, it represents the perceived hue. The hue cells also 

receive feedback projections from the inter-ART associative map described in the next 

paragraph. 

To explain how object knowledge affects color perception, we followed the approach 

previously employed by Domijan and Šetić (2016). We proposed the existence of two parallel 

ART circuits in the ventral stream: one dedicated to color-coding (the color ART circuit) and 

another dedicated to shape coding (the shape ART circuit). This reflects the division of labor 

between color-selective and form-selective neurons found in the ventral visual stream (Lennie, 

1998). We assumed that the F2 layers of the color and shape ART circuits are mutually 

connected via the inter-ART associative map. Synaptic connections between winning nodes in 

the color and shape ART circuits and the inter-ART associative map are established via Hebbian 

learning. Such combined selectivity to color and form has been observed in the anterior IT 

(Chang et al., 2017; Lafer-Sousa & Conway, 2013). The inter-ART associative map encodes 

statistical regularities in the cooccurrence of colors and shapes. In other words, the inter-ART 

associative map establishes strong bidirectional associations between combinations of colors 

and shapes that often occur together in the environment (e.g., yellow ↔ banana). Next, we 

followed O’Callaghan et al. (2017) and suggested that the shape ART circuit responds faster to 

the same stimulus relative to the color ART circuit. This implies that the shape ART circuit 

activates the inter-ART associative map, which sends top-down expectations about color to the 

color ART circuit. Top-down activation of the F2 layer biases processing within the color ART 
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circuit when it receives bottom-up input. In the simulations reported in this paper, the shape 

ART circuit and inter-ART associative map were not explicitly modeled because they served 

only to explain how feedback signals to the color ART circuit were generated. 

Regarding the anatomical location in the brain, we hypothesized that the color ART 

circuit resides in V4 or is spanned between V4 and the posterior IT. In the latter case, V4 may 

encompass the F0 and F1 layer, and the posterior IT the F2 layer (Papale et al., 2018; Roe et al., 

2012; Winawer & Witthoft, 2015). Furthermore, we assumed that color categories are learned 

from spatially invariant representation, which receives converging input from all V1 locations. 

Which location sends activity to the color ART circuit depends on spatial attention, which 

dynamically routes signal flow from V1 via V2 to V4. The model implies that only a few colors 

can consciously be perceived, arriving from the retinotopic locations to which spatial attention 

is directed (Duncan, 1980a, 1980b; Huang & Pashler, 2007; Huang et al., 2007). 

In addition to the bias induced by the inter-ART associative map on the activity of hue 

cells in the color ART circuit, it is also possible that some of the effects of expectation arise 

from the transfer of color signals to color working memory (Beck & Schneider, 2017). To 

account for this issue, we added a color working memory circuit to the model. It receives input 

from the color ART circuit. We assumed that the color working memory circuit is also a WTA 

network like the F2 layer of the color ART circuit. We further assumed that the color working 

memory circuit contains a hue representation identical to the one found in the color ART circuit. 

To account for variability in color reports and color confusion observed in the color working 

memory, input to the color working memory circuit is passed through a distance-dependent 

filter before it activates competition in the color working memory circuit. Hence, we modeled 

how working memory and/or decision-making circuits could contribute to the biased reports of 

color perception observed in behavioral studies. 

 

2.1.4.2. Simulation of the Memory Color Effect 

 

 Before simulating the memory color effect, we simulated the stable self-organization of 

hue categories to illustrate that the color ART circuit is able to learn hue categories without 

catastrophic forgetting. This simulation illustrated learning stability in the color ART circuit. 

Inputs to the cones ranged from 0 to 10 and were systematically increased or decreased in small 

steps. The F2 layer consisted of 21 nodes labeled Node 1 to Node 21. At the end of the learning 

session, each F2 node was tuned to one hue ranging from pure red (Node 1 was tuned to input 

IL = 10.0, IM = 0.0) across various mixtures of red and green (Nodes between 2 and 20) to pure 
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green (Node 21 was tuned to input IL = 10.0, IM = 0.0). The color tuning established in this 

simulation was used in all subsequent simulations reported in this study. 

 Next, we simulated the memory color effect by employing gray as the input to the color 

ART circuit. The bottom-up input was set at IL = 5.0, IM = 5.0 from t = 200 ms until the end of 

the simulation. Another input to the F2 layer came from top-down color expectation from the 

inter-ART map. We assumed that a single node in the inter-ART map is connected to multiple 

nodes in the color ART circuit because the same object can be observed with different colors 

on different occasions. In subsequent simulations, we examined the impact of two hypothetical 

distributions, labeled as narrow and wide feedback, on the activity of F2 nodes. The narrow 

distribution corresponds to a situation where the observer has a narrow range of color 

experiences associated with an object. The wide distribution corresponds to a situation where 

color is less diagnostic because the observer could have more varied color experiences 

associated with an object.  

 First, we examined the activity of opponent L- and M-cone pathways in response to the 

presentation of gray color. The simulation demonstrated that cone activity tracked input 

amplitudes. Transmitter gates faithfully carried over input amplitudes from the cones to the F0 

nodes. The F0 nodes exhibited normalization of cone output due to divisive inhibition. After an 

initial burst of activity due to disynaptic inhibition, both F0 nodes settled to 0.5, illustrating their 

ability to represent relative contributions to the L- and M- cone outputs. The F1 nodes 

successfully tracked the activity of F0 nodes, except during a short period of about 300 ms to 

400 ms. This activity reduction resulted from activating the F2 node at Location 3. The F2 node 

was the winner of the competition due to the presence of narrow feedback with a gain factor of 

0.1. We assumed that the arrival of the bottom-up input was delayed relative to the arrival of 

feedback signals to the F2 layer. Instead, the winner was Node 11. The winning node was shifted 

in the feedback direction to Node 3, consisting of strong L-cone (IL = 9.0) and weak M-cone 

(IM = 1.0) activation. Consequently, the weak top-down signal reduced activity in the M-cone 

pathway arise from. 

 Second, we examined how the F2 layer manages the influence of narrow and wide 

feedback at three levels of the feedback gain factor, 0.1, 0.3, and 0.5. The results demonstrate 

that a gain factor of 0.3 was a reasonable upper limit in both types of feedback distributions. A 

further increase in feedback strength would result in an exhaustive search across all F2 nodes, 

that is, all nodes positioned at locations 1 to 10. Therefore, this gain factor setting was used in 

all subsequent simulations. Regarding the cognitive penetrability of color perception, we 

observed that in each instance examined, the F2 layer eventually reached Node 11, which 
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corresponds to the exact mid-point between red and green. However, the time required to select 

this node varied as a function of the strength and shape of the feedback distribution. Generally, 

widening the spread of the feedback distribution and increasing the feedback gain factor 

enabled the network to spend more time in a biased state, thus increasing the opportunity to 

detect the memory color effect. The simulation demonstrated that moving the feedback 

distribution peak toward Node 1 or Node 21 strengthens the memory color effect and moving 

the peak closer to Node 11 weakens the effect.  

 Third, we demonstrated how the timing of the arrival of feedback signals relative to the 

bottom-up input influenced the F2 layer activity. Feedback was turned on at t = 250 ms, t = 275 

ms, or t = 300 ms, creating feedback delays of 50 ms, 75 ms, or 100 ms, respectively. When the 

feedback was delayed for 50 ms the F2 layer was biased toward red hues to the same degree as 

observed when there was no delay in narrow and wide feedback. The results indicate the 

presence of a narrow temporal window during which feedback signals can penetrate the F2 layer 

and bias color perception toward diagnostic hues. In other words, the amount of time required 

to reach resonance depends on the relative timing of feedback signals and the bottom-up input. 

 Fourth, we demonstrated how the speed of neural activation (a node’s time constant τx) 

influenced the penetrability of the F2 layer. We varied the time constant of the F2 node between 

100 ms, 50 ms, and 25 ms to make it slower relative to the F1 layer and other model components. 

When the speed of neural activity was set at τx = 100 ms and τx = 50 ms, the memory color 

effect disappeared in the narrow feedback condition. In contrast, it produced a weak but long-

lasting (at τx = 100 ms) and stronger but short-lasting (at τx = 50 ms) memory color effect in the 

wide feedback condition. When the speed of neural activity was set to τx = 25 ms, both narrow 

and wide feedback produced the memory color effect. Therefore, it can be concluded that the 

speed of neural integration within nodes in the F1 and F2 layers could also contribute to the total 

time the network spends in the hysteretic state that is not supported by the bottom-up input. If 

the observer chooses to respond before the reset signal, his report will reflect the bias induced 

by the top-down expectation. However, if the observer waits until the ART circuit dynamics 

settle on the unbiased, long-lasting resonant state, no memory color effect would occur. 

 Finally, we examined the behavior of the F2 layer under different selections of vigilance 

parameter ρ. Vigilance was set at 0.5, 0.7, or 0.9 in the interval [0 ms, 800 ms]. The results 

demonstrate that the vigilance parameter contributes to notable variability in the strength of the 

memory color effect. Low vigilance levels such as 0.5 enabled both narrow and wide feedback 

to penetrate the F2 layer and generate the resonant state with the feedback-biased choice of hue. 

When vigilance was increased to 0.7, only wide feedback remained in a biased state. Once 
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vigilance was returned to its default value of 0.96 at t > 800 ms, in all conditions examined, the 

F2 layer inhibited the current winner and selected Node 11, unless it was not previously selected. 

Therefore, even when the ART circuit spends some time in a state of low vigilance, where 

resonance is established with a biased hue category, it eventually recovers from this condition 

and reinstates its sharp distinction between hue categories. 

 

2.1.4.3. Simulation of the Spanish Castle Illusion 

 

 To simulate the Spanish castle illusion, we compared two situations. The first simulation 

illustrated how color pre-processing generates a typical afterimage without feedback signals, 

while the second illustrated how feedback from the inter-ART associative map to the F2 layer 

strengthens color sensation (making it more vivid) in the feedback-enhanced afterimage. 

 The network was first adapted to red, then gray color was presented. Thus, the bottom-

up input was set to IL = 10.0 and IM = 0.0 in the interval between t = 100 ms and t = 600 ms, 

and to IL = 5.0 and IM = 5.0 until the end of the simulation. While maintaining of an elevated 

activity level in the L-cone pathway, its neurotransmitter gate decayed and became less 

effective because of the exhaustion of its presynaptic buttons. In the F0 layer, there was an initial 

overshoot in the L-cone pathway in response to the presentation of red color, followed by a 

small dip in activity due to transmitter depletion. After the network was adapted to red, the 

subsequent presentation of mid-gray stimulus activated both cone pathways to the same degree. 

However, the response of the F0 node in the M-cone pathway was stronger than that of the L-

cone due to the imbalance in the neurotransmitter available in the two pathways. This imbalance 

caused an activity overshoot in the M-cone pathway. The temporal evolution of F1 nodes 

activity follows a similar pattern to that observed in the respective F0 nodes. Their activity level 

was generally lower than that of the F0 nodes because they compute the fuzzy intersection. F2 

layer activity and the orienting subsystem tracked changes occurring in the F1 layer. Initially, 

the F2 layer selected Node 1 as a winner, indicating a perception of pure red. When the input 

color switched to gray, activity overshoot in the F1 node of the M-cone pathway activated the 

orienting subsystem and forced the selection of Node 15 in the F2 layer, which corresponds to 

the perception of a slightly greenish hue and represents bias toward green. 

 The second simulation demonstrated the Spanish castle illusion. Feedback was delivered 

to the F2 layer from t = 600 ms until the end of the simulation. We varied the orientation of 

feedback distribution to induce bias toward red or green hues. We also compared the effect of 

narrow and wide feedback as in the previous simulations. When red-biased narrow feedback 
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was applied, the simulation showed results consistent with those of an experimental report by 

Lupyan (2015b), who observed no statistically significant difference between conditions where 

bias was induced toward the adapted hue and the control condition without feedback. 

Conversely, the green-biased narrow feedback forced the F2 layer to choose Node 18, 

corresponding to a more vivid experience of green compared to Node 15 selected in the control 

condition without feedback. Thus, the narrow feedback produced a more vivid experience of 

green color in the afterimage, as observed in the Spanish castle illusion. However, this 

feedback-enhanced afterimage is fleeting and removed at around 1,100 ms, which explains why 

the observer eventually realizes they are watching an achromatic scene. In contrast to narrow 

feedback, wide feedback failed to produce the Spanish castle illusion. The red-biased wide 

feedback produced a weaker color experience than a normal afterimage, and the green-biased 

wide a feedback could not generate feedback-enhanced afterimage.  

 

2.1.4.5. Conclusion 

 

 The ART circuit is an attractor neural network equipped with computational 

mechanisms, such as gain control and an orienting subsystem, to constrain the impact of top-

down predictions on ongoing neural processing. Their computational role is to solve the 

stability-plasticity dilemma. This is achieved by preventing the recoding of old memories in the 

face of new input patterns. Marić and Domijan (2020) observed that the ART circuit is 

temporarily vulnerable to top-down influences when searching through the state space to find 

the best match between the bottom-up input and choice of hue category. Once the network 

reaches the attractor, it is fully resistant to additional top-down influences. Based on these 

observations, it can be concluded that the ART circuit is an example of a predictive system that 

is not penetrable (most of the time) by top-down influences. Together, the reported findings 

indicate that the second thesis problem has been successfully addressed. 

 

 

2.2. Integrated Nature of Findings 

 

Feedback projections from higher-order to lower-order areas are prominent features of 

the visual cortex. Despite significant effort, no consensus has been reached regarding the role 

of feedback projections in visual perception and their influence on perceptual experiences. In 
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this thesis, computational modeling is employed to examine two contrasting hypotheses. 

Feedback may direct visual attention to a relevant portion of visual space, selectively routing 

signal flow through the visual hierarchy. Conversely, in line with the predictive coding 

framework, feedback could communicate expectations to lower-order areas in the visual 

hierarchy. Predictions are derived from internal or generative models of the environment that 

encapsulate the knowledge of what is likely an interpretation of incoming sensory stimulation. 

From this perspective, predictions directly modulate visual perception. In this thesis, neural 

network models are developed to demonstrate that the effect of predictions on visual perception 

is constrained by the same mechanisms that assure stable learning and memory, as suggested 

by ART. 

The first part of this thesis, encompassing work published in Marić and Domijan (2018a) 

and Marić and Domijan (2019), addresses the proposal that feedback projections contribute to 

the attentional selection of relevant information. The authors developed a new version of the 

WTA network labeled the feature-based WTA or F-WTA network. The F-WTA network 

extends previous proposals regarding spatial selection because it can select all locations 

occupied by the same feature value. Hence, it implements the Boolean map theory of visual 

attention. Significantly, its ability to select locations does not depend on the number of locations 

sharing the same feature value. The F-WTA network is also capable of selecting objects and 

simulating mental contour tracing properties. To achieve this, the network is equipped with 

dendritic and synaptic computation mechanisms. Marić and Domijan demonstrated that these 

are essential for achieving the flexibility required to respond to different types of top-down 

demands. 

  The second part of this thesis encompasses work published in Marić and Domijan 

(2018b) and Marić and Domijan (2020) and addresses the consequences for visual perception 

when feedback transmits top-down predictions. The authors suggested that in contrast to 

predictive coding, feedback can be constrained by neural mechanisms used to assure stable 

memory and learning, as demonstrated by ART. ART has been successfully applied in 

modeling a wide range of behavioral and neural data. Hence, Marić and Domijan (2020) 

adopted this theory to develop a neural network for color perception and employed it to simulate 

effects such as the memory color effect of Spanish castle illusion. These effects were considered 

to support the claim that predictions penetrate visual perception and consequently alter its 

content via feedback connections within the ventral stream. In contrast, their simulations 

demonstrated that the same effects could be observed within a neural model that actively 

opposes feedback influences when they fail to match the bottom-up input. They concluded that 
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their simulations support the validity of ART as a theory of cognitive and neural information 

processing. 

 The combined results of this doctoral thesis suggest that the effects of feedback on visual 

processing are complex and diverse and cannot be reduced to a single process. The feedback 

can produce different outcomes depending on the type of neural architecture in which it is 

embedded. Feedback within the dorsal stream contributes to attentional selection by providing 

top-down guidance to the spatial map, which flexibly selects locations, objects, or features. In 

contrast, feedback within the ventral stream participates in forming the resonant state that 

corresponds to conscious perceptual experience. In this network, feedback is controlled by 

bottom-up inputs, not the other way around. Consequently, feedback within the ART circuit 

cannot alter the content of perception. This conclusion contradicts the currently popular 

predictive coding framework assuming the pervasive effect of feedback at all levels of the visual 

hierarchy.  

 

 

2.3. Scientific Contribution of the Thesis 

 

Regarding the modeling of selective visual attention, this doctoral thesis demonstrates 

that the WTA neural network endowed with synaptic and dendritic computation mechanisms 

can simultaneously support space-, object-, and feature-based selection. Hence, the proposed 

model provides a unified explanation of seemingly disparate attentional processes and extends 

beyond previous WTA models restricted to modeling space-based attention. The same model 

is capable of implementing visual routines such as mental contour tracing. The proposed model 

provides a neural interface for the interaction between visual perception and cognition. Previous 

theoretical work treated dendritic and synaptic computation in isolation and independently of 

the computational demands of attentional selection. In this work, these computational elements 

are combined in a unique neural model to demonstrate that they greatly expand the WTA 

network’s ability to select either a location in space, all locations occupied by an object, or all 

locations occupied by the same feature value.  

Regarding the role of predictions in visual perception, this doctoral thesis helps clarify 

that the existence of feedback projections in the visual cortex does not necessarily imply that 

top-down influences alter the content of conscious visual perception. The ART computational 

framework is adopted to show that feedback projections are a necessary component of the 

neural architecture capable of stable learning and memory. Feedback supplies top-down 
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expectations that are compared with bottom-up input. However, at the same time, feedback 

projections are prevented from directly influencing on visual perception by the same 

mechanisms that enable such stability.  
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3. CONCLUSIONS 

 

 

3.1. Feedback and Visual Attention 

 

Winner-takes-all networks are an important class of neural models used to model 

selective visual attention. This doctoral thesis demonstrates how to incorporate dendritic and 

synaptic computation to expand the flexibility of a standard WTA network. The new model, 

labeled as the F-WTA network, is capable of selecting multiple winners depending on top-down 

guidance provided by feedback connections. If only one location is cued, the network spreads 

the enhanced activity from the cued location to all connected elements. The results of computer 

simulations indicate that the model’s behavior is consistent with psychophysical findings on 

mental contour tracing suggesting that the proposed network successfully implements visual 

routines and object-based attention. Conversely, if the value of an abstract feature, such as red 

color, is cued, the proposed network selects all locations occupied by the red color, thus acting 

as a Boolean map. Moreover, computer simulations demonstrate that the network can combine 

multiple Boolean maps using set intersection and union operations. The combined results 

indicate that the F-WTA network unifies the Boolean map theory of visual attention (Huang & 

Pashler, 2007) with IGT (Roelfsema & Houtkamp, 2011) to provide a complete theory of 

visuospatial selection. 

 

 

3.2. Feedback and Predictions 

 

According to the predictive coding framework, feedback connections send predictions 

to the lower-order stages of cortical visual processing. Predictions embody knowledge about 

the likely causes of stimulation registered in the retina. Predictive coding implies that visual 

perception is continuous with cognition; there is no clear boundary between them. Accordingly, 

much behavioral and neural data support the conclusion that vision is cognitively penetrable. 

This doctoral thesis demonstrates that ART is a viable neurocomputational alternative to 

predictive coding. ART manages feedback influences on vision differently. In ART, the 

mismatch between bottom-up input and top-down predictions activates the orienting subsystem, 

releasing an inhibitory wave to reset the network and clear traces of erroneous prediction. A 

new version of the ART network, called the color ART circuit, has been developed to simulate 
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the properties of color perception. Computer simulations of the color ART circuit indicate that 

the empirical data that seem to support cognitive penetration, such as the memory color effect 

in the Spanish castle illusion, are also observed within the color ART circuit. It is concluded 

that feedback projections could communicate predictions. However, this finding does not imply 

that vision is cognitively penetrable. 
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APPENDIX 

 

 

The appendix section consists of five appendixes. Appendixes A, B, C, and D represent four 

published papers, respectively. Appendix E contains supplemental materials in the form of 

Open Science Framework links that generate the MATLAB code to reproduce all results 

reported in the papers. Every paper has been produced in collaboration with a mentor who 

designed the study and wrote the manuscript and PhD student performed computer simulations 

and wrote the manuscript. 
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ABSTRACT 

 

 

Huang and Pashler (2007) suggested that feature-based attention creates a special form of 

spatial representation, which is termed a Boolean map. It partitions the visual scene into two 

distinct and complementary regions: selected and not selected. Here, we developed a model of 

a recurrent competitive network that is capable of state-dependent computation. It selects 

multiple winning locations based on a joint top-down cue. We augmented a model of the WTA 

circuit that is based on linear-threshold units with two computational elements: dendritic 

nonlinearity that acts on the excitatory units and activity-dependent modulation of synaptic 

transmission between excitatory and inhibitory units. Computer simulations showed that the 

proposed model could create a Boolean map in response to a featured cue and elaborate it using 

the logical operations of intersection and union. In addition, it was shown that in the absence of 

top-down guidance, the model is sensitive to bottom-up cues such as saliency and abrupt visual 

onset. 

 

Keywords: Boolean map, feature-based attention, lateral inhibition, neural network, winner-

take-all 
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1. INTRODUCTION 

 

In the literature on visual attention, significant progress has been made in characterizing 

the principles of selection. Visual attention can be allocated flexibly to a circumscribed region 

of space, the whole object or feature dimensions such as color and orientation (Nobre & 

Kastner, 2014). Indeed, early work suggested that a restricted circular region of space is a 

representational format of attentional selection. Posner (1980) proposed that attention operates 

like a spotlight that highlights a single circular region of space with a fixed radius. All locations 

that fall inside the spotlight are selected, and everything outside is left out. An extension of this 

proposal, which is called the zoom-lens model, suggests that the spotlight of attention can 

change its radius depending on the spatial resolution that one wants to achieve (Eriksen & St. 

James, 1986). If high resolution is required, the spotlight can be narrowed to capture details in 

the selected region, whereas the radius of the spotlight can be widened when a lower resolution 

is sufficient.  

Other studies point to an object as a unit of selection. Duncan (1984) showed that it is 

easier to report two attributes if they appear on the same object, relative to the scenario in which 

each attribute appears on a different object. This finding implies that the object is selected as a 

whole and has been replicated many times using different stimuli and behavioral paradigms 

(Scholl, 2001). This effect cannot be explained by spatial attention because objects were 

spatially superimposed, that is, they shared the same locations. More recently, it was shown 

that attention can also be allocated to a visual feature such as color or direction of motion 

independent of spatial location (Saenz et al., 2002, 2003). Single-unit recordings have shown 

that feature-based attention is accompanied by the global location-independent modulation of 

neural response in a range of areas in the visual cortex (Boynton, 2005; Maunsell & Treue, 

2006). Attentional modulation was described as a multiplicative gain change that increases 

responses of neurons that are selective to attended feature values and decreases responses of 

neurons that are tuned to unattended feature values (Martinez-Trujillo & Treue, 2004; Treue & 

Martinez-Trujillo, 1999). 

Object-based attention, however, is not necessarily detached from spatial representation. 

There is behavioral and neurophysiological evidence that object-based attention involves 

selection of all spatial locations that are occupied by the same object. Specifically, it was 

suggested that attention selects a grouped array of locations (O’Grady & Müller, 2000). In other 

words, attention spreads from one spatial location along the shape of the object and highlights 

all locations that belong to the object (Richard et al., 2008; Vatterott & Vecera, 2015). 
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Neurophysiological studies showed that object-based selection is indeed achieved by the 

spreading of the enhanced firing rate along the shape of the object (Roelfsema, 2006; Roelfsema 

& de Lange, 2016).  

In a similar way, feature-based attention might involve the selection of all locations that 

are occupied by the same feature value, as shown by Huang and Pashler (2007). They proposed 

that attention is limited because it may access only one feature value (e.g., red) per dimension 

(e.g., color) at any given moment. However, the accessed feature value is bound to space in 

parallel, without capacity limits. Feature-based attention is allocated in space via the formation 

of a binary or Boolean map. When a conscious decision is made to attend to a specific feature 

value, the Boolean map indicates all spatial locations that are occupied by the chosen feature 

value because they are labeled by a positive value (e.g., 1), while all other locations are labeled 

with zero. In each selection process, selected locations need not be contiguous in space, but 

they must share the same feature value. After a Boolean map is formed, it is possible to operate 

on its output by applying the set operations of intersection and union. Recent work suggests 

that a spatial representation, such as a Boolean map, might mediate perceptual grouping by 

similarity (Huang, 2015; Yu & Franconeri, 2015). Moreover, the idea has been recently applied 

successfully in the computer vision literature on developing algorithms for saliency detection 

(Qi et al., 2017; Zhang & Sclaroff, 2016). 

Figure 1 illustrates a Boolean map that is formed in response to three different stimulus 

configurations and sequential application of two top-down feature cues. Figure 1A shows a 

simple stimulus that consists of red and green squares. An observer might attempt to isolate 

only red or only green items. To do so, a top-down cue should be supplied to the feature map 

that encodes the desired feature value. For example, when attention is directed to the red color, 

the top-down cue highlights all locations that are occupied by red squares. The Boolean map 

picks up on this feature cue and forms a spatial representation in which cued locations are 

labeled with 1 (white) and non-cued locations are labeled with 0 (black). In terms of a neural 

network, these labels correspond to the active (excited) and inactive (inhibited) states of the 

corresponding nodes in the network (Boolean Map – 1). Later, the observer might wish to 

switch to green color (Boolean Map – 2). Again, in a response to a new feature cue, the Boolean 

map now shows all locations that are occupied by green squares. 

Figure 1B shows a typical stimulus that is used in visual search experiments. It consists 

of red and green horizontal and vertical bars. The task is to find a red horizontal bar. This is an 

example of a conjunction search task in which two feature dimensions should be combined to 

find the target object. According to Huang and Pashler (2007), the conjunction task is solved in 
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two steps. In the first step, a Boolean map is formed by top-down cueing of red items, 

irrespective of their orientations. In the second step, only horizontal items are cued. However, 

since red items have already been selected, the second Boolean map will correspond to the 

intersection of red and horizontal items. There is only one item that satisfies these selection 

criteria: the target. In this way, visual search is substantially faster compared to the strategy of 

sequentially visiting each item by moving the attentional spotlight across the visual field. It is 

also possible to reverse the order of the applied feature cues. In the first step, horizontal items 

might be cued, and the intersection is formed by highlighting red items in the second step. 

Importantly, there is behavioral evidence that observers indeed implement such a subset 

selection strategy in conjunction search tasks (Egeth et al., 1984; Kaptein et al., 1995). 

Moreover, Huang and Pashler (2012) showed that the same strategy is used in the perception 

of spatial structure in a stimulus that is composed of multiple items that differ in several 

dimensions. 

Figure 1C illustrates an example of the union of two Boolean maps. As in the previous 

example, the observer starts by cueing red items and creating a Boolean map that consists of a 

representation of their locations. In the second step, the observer wishes to combine red with 

horizontal items. Therefore, in the second step, one should cue horizontal items but 

simultaneously maintain locations of the remaining items in memory. The resulting new 

Boolean map now represents the locations of all red and all horizontal items that were found in 

the image. Computing with Boolean maps might not be restricted to only two steps, as Figure 

1 suggests. It is possible to incorporate more feature dimensions, such as motion, texture, or 

size, that can also be engaged in creating Boolean maps that are more complicated.  
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Figure 1. Illustration of the Boolean map that was created in response to the input image (Stimulus) 

after the first feature cue was applied to the spatial representation (Boolean Map – 1) and after the 

second feature cue was applied (Boolean Map – 2). (A) Boolean maps that were created by two-color 

cues: red in the first step and green in the second step; (B) intersection of two Boolean maps, where 

red is cued in the first step and horizontal orientation in the second step; (C) union of two Boolean 

maps, where red is cued in the first step and horizontal orientation in the second step. 

 

 Feature-based spatial selection, as illustrated by the Boolean map, provides a strong 

constraint on the computational models of visual attention because it requires simultaneous 

selection of arbitrarily many locations based on an arbitrary criterion that is set by the observer. 

Computational models of attention often rely on a winner-take-all (WTA) network to select a 

single, most salient location from the input image (Itti & Koch, 2000, 2001). The WTA network 

consists of an array of excitatory nodes that are connected reciprocally with inhibitory 

interneurons. This anatomical arrangement creates lateral inhibition among excitatory nodes 

that lead to the selection of a single node that receives maximal input and the suppression of all 
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other nodes, which receive non-maximal input. However, when faced with the input where 

multiple (potentially many) nodes share the same maximal input level, the typical WTA 

network tends to suppress all winning nodes due to a strong mutual inhibition among them 

instead of selecting them together. For example, Usher and Cohen (1999) showed that, under 

the conditions of strong recurrent excitation and weak lateral inhibition, the WTA network 

reaches a steady state with multiple active winners. Importantly, activation of the winning nodes 

decreases linearly towards zero as their quantity increases. In other words, this network design 

suffers from the capacity limitation. This is a useful property in modeling short-term memory 

and frontal lobe function (Haarmann & Usher, 2001) but it is inadequate for understanding how 

the Boolean map might arise in a large retinotopic map, as exemplified by Figure 1.  

Another problem is that the dynamics of the WTA network are not sensitive to transient 

changes in the input amplitude. Due to strong self-excitation and the resulting persistent 

activity, the WTA network settles into one of its memory states (fixed points). Importantly, 

each memory state is independent of later inputs. If self-excitation is weakened, the network 

will become sensitive to input. However, at the same time, it will lose its ability to form a 

memory state and will behave like a feedforward network (Rutishauser & Douglas, 2009). One 

way to solve this problem is to apply an external reset signal to the network before a new input 

is processed (Grossberg, 1980; Itti & Koch, 2000, 2001; Kaski & Kohonen, 1994). However, 

this is not sufficient in the context of feature-based attention. An intersection or union operation 

between two Boolean maps requires that the currently active memory state (formed after the 

first feature cue) be updated by taking into account new input (the second feature cue). 

Therefore, the dynamics of the WTA network should allow uninterrupted transition between 

memory states that are governed by external inputs. In other words, the WTA network should 

be capable of state-dependent computation (Rutishauser & Douglas, 2009).  

 To summarize, a WTA network that is capable of computing with Boolean maps should 

simultaneously satisfy two computational constraints: 

1) It should be able to select together all locations that share a common feature value. This 

should be achieved without degrading the representation of the winners.  

2) It should exhibit state-dependent computation, in which new inputs are combined with 

the current memory state to produce a new resultant state (e.g., intersection or union). 

Here, we have developed a new WTA network that satisfies these constraints and provides the 

neural implementation of the Boolean map theory of attention (Huang & Pashler, 2007). 
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2. MODEL DESCRIPTION 

 

The aim of the current work is to provide an explanation of how a Boolean map may be 

formed in a recurrent competitive network that can implement feature-based winner-take-all 

(F-WTA) selection. To this end, we have extended the previously proposed network model 

based on the linear-threshold units (Hahnloser, 1998; Hahnloser et al., 2003; Rutishauser & 

Douglas, 2009). Concretely, the model circuit is presented in Figure 2. It consists of a single 

inhibitory unit, which is reciprocally connected to a group of excitatory units. In addition to 

these basic elements, we introduce two processing components into the WTA circuit to expand 

its computational power. The first is a dendritic nonlinearity, which prevents excessive 

excitation that arises from self-recurrent and nearest-neighbor collaterals. We modeled the 

dendritic tree as a separate electrical compartment with its own non-linear output that is 

supplied to the node’s body (Branco & Häusser, 2010; Häusser & Mel, 2003; London & 

Häusser, 2005; Mel, 2016). The second is modulation of synaptic transmission by retrograde 

inhibitory signaling (Alger, 2002; Regehr et al., 2009; Tao & Poo, 2001; Zilberter et al., 2005). 

This is a form of presynaptic inhibition, where postsynaptic cells release a neurotransmitter that 

binds to the receptors that are located on the presynaptic terminals. Retrograde signaling creates 

a feedback loop that dynamically regulates the amount of transmitter that is released from the 

presynaptic terminals. Here, we have hypothesized that such interactions occur in recurrent 

pathways from the excitatory nodes to the inhibitory interneuron and back from the interneuron 

to the excitatory nodes. In the excitatory-to-inhibitory pathway, retrograde signaling enables 

the inhibitory interneuron to compute the maximum instead of the sum of its inputs. 

Computation of the maximum arises from the limitation that the activity of the inhibitory 

interneuron cannot grow beyond the maximal input that it receives from the excitatory nodes. 

Furthermore, retrograde signaling in the inhibitory-to-excitatory pathway enables the excitatory 

nodes that receive maximal input to protect themselves from the common inhibition. In this 

way, the network can select all excitatory nodes with maximal input, irrespective of their 

quantity or arrangement in visual space. 
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Figure 2. Feature-based winner-take-all (F-WTA) circuit. Connections between excitatory (red 

circles) and inhibitory (blue disk) units are modulated by retrograde inhibition (curved blue arrows). 

Self-excitation and nearest-neighbor excitation are mediated by the dendrites of the excitatory units. 

The same motif is repeated for all excitatory nodes in the recurrent map. 

  

At first sight, it might appear strange to propose that an excitatory unit can inhibit its 

input by releasing a neurotransmitter that binds to the presynaptic terminal. However, several 

signaling molecules have been identified to support such interactions, including endogenous 

cannabinoids (Alger, 2002). Moreover, Zilberter (2000) found that glutamate is released from 

dendrites of pyramidal neurons in the rat neocortex and suppresses the inhibition that impinges 

on them. In addition, similar action has been found for GABA (Zilberter et al., 1999), which 

suggests that conventional neurotransmitters can engage in retrograde signaling.  

To situate the proposed F-WTA circuit in a larger neural architecture that describes the 

cortical computations that underlie top-down attentional control, we have adopted the model 

that was proposed by Hamker (2004). He showed how attentional selection of a target arises 

from the recurrent interactions within a distributed network that consists of model cortical area 

V4, the inferotemporal cortex (IT), the posterior parietal cortex (PPC), and the frontal eye fields 

(FEF). Figure 3 illustrates part of these interactions that are involved in feature-based attentional 

guidance. Top-down signals that provide feature cues originate in the IT, which contains a 

spatially invariant representation of relevant visual features. The IT sends feature-specific 
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feedback projections to the V4, where topographically organized feature maps for each feature 

value are located. For simplicity, we consider only maps for two colors (red and green) and two 

orientations (vertical and horizontal). We do not explicitly model IT and V4 dynamics. Rather, 

they serve here as a tentative explanation of how input to the F-WTA network arises within the 

ventral visual pathway. Also, we omitted the contribution of the FEF and its spatial reentry 

signals to the V4 activity. 

We hypothesize that the feature-based WTA network resides in the PPC, where it 

receives summed input over all feature maps from the V4. Top-down guidance is implemented 

by a temporary increase in activity in one of the V4 feature maps. For example, when the 

decision is made to attend to the red color, the IT representation of red color sends feedback 

signals to the Red Map in the V4. Top-down signals to the feature map are modeled as a 

multiplicative gain of neural activity, which is consistent with neurophysiological findings 

(Martinez-Trujillo & Treue, 2004; Maunsell & Treue, 2006; Treue & Martinez-Trujillo, 1999). 
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Figure 3. Neural architecture for the top-down guidance of attention by feature cues, following 

Hamker (2004). Input is processed in retinotopically organized feature maps for colors and 

orientations. These maps also receive top-down signals, which provide feature guidance. In this 

example, input image is taken from Figure 1B and red color is cued by the top-down signals. 

Therefore, the activity of the nodes in the Red map is enhanced (white discs) relative to the activity in 

all other feature maps (gray discs) because latter receives only feedforward signals. Black discs 

represent inactive nodes. In the feature maps, this indicates the absence of a feature at a given 

locations. The F-WTA network sums output of all feature maps. Its activity represents all locations 

occupied by the cued feature. Parentheses contain reference to cortical areas thought to be involved in 

proposed computations. R – red; G – green; H – horizontal; V – vertical. 

 

The following neural network equations represent the quantitative description of the 

model. Each unit is defined by its instantaneous firing rate (Dayan & Abbott, 2000). The time 

evolution of the activity of excitatory node x at position i in the recurrent map is given by the 

following differential equation: 

  

      1 1 1
i

x i i i i i i y

dx
x I t f x x x g y x T

dt
  



 
        
 

. (1) 

   

The time evolution of the activity of inhibitory interneuron y is given by 
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 . (2) 

 

Parameters τx and τy are integration time constants for excitatory and inhibitory nodes, 

respectively. We assume that inequality τx > τy holds, which accords with the observation in 

electrophysiological measurements that inhibitory cells exhibit faster dynamics than excitatory 

cells (McCormick et al., 1985). The second term on the left-hand side of Equations (1) and (2) 

describes the passive decay that drives the unit’s activity to the resting state in the absence of 

external input. Firing rate activation function [u]+ is a non-saturating rectification nonlinearity, 

which is defined by 

  

    max ,0u u

 . (3) 

 

Following Hamker (2004), we assume that feedforward input Ii at time t to the excitatory node 

xi in the F-WTA network is given by the sum over activity in all V4 feature maps 
 m

iI  , 

  

        m m

i i

m

I t I G t . (4) 

 

In Equation (4), m denotes available feature maps with  ,m red green  in the simulation that 

is reported in section Simulation of the Formation of a Single Boolean Map and 

 , , ,m red green horizontal vertical  in the simulation that is reported in section Simulation of 

the Intersection and Union of Two Boolean Maps. Parameter Gm refers to the feature-specific, 

global multiplicative gain that all units 
 m

iI  within the same feature map m receive via top-

down projections. As shown in Figure 2, these projections arrive from the feature representation 

in the IT. Multiplicative gating is generally consistent with previous models that describe the 

effect of feature-based attention on the responses of neurons in the early visual cortex (Boynton, 

2005, 2009). Equation (4) ensures that the F-WTA network is not particularly sensitive to any 

feature value. Rather, it signals the behavioral relevance of locations in a spatial map. Here, the 

relevance can be set according to differences in the bottom-up input 
 m

iI  that arise from 

competitive interactions in the early visual cortex. Alternatively, relevance can be signaled by 
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the top-down feature cues Gm that change the gain of all locations that are occupied by the same 

feature value.  

Dendritic output f(u) is described by the sigmoid response function 

 

    
1 d

d

u T

S
f u

e
 




 (5) 

 

where λ and Td control the shape of the sigmoid function and Sd is its upper asymptotic value. 

We set λ to a high value to achieve a steep rise of the dendritic activity immediately after its 

input crosses the dendritic threshold, which is denoted as Td. Such strong nonlinearity is 

justified by experimental data, which show all-or-none behavior in real dendrites (Wei et al., 

2001; Polsky et al., 2004). In Equation (1), parameter α controls the strength of the impact that 

the dendritic compartment exerts on the soma. 

Self-recurrent xi and nearest-neighbor collaterals xi–1 and xi+1 arrive on the dendrite of 

the excitatory node, which is consistent with the anatomical observation that most recurrent 

excitatory connections are made on the dendrites of the excitatory cells (Spruston, 2008). Nodes 

at the edge of the network receive excitation only from a single available neighbor. That is, 

node x1 receives excitation only from x2, and xN receives excitation only from xN–1. Nearest-

neighbor excitatory interactions enable feature cues to spread activity enhancement 

automatically to all connected locations that contain a given feature value. This is not essential 

for the simulation of Boolean maps, but we included it in our model because recurrent 

connections among nearby neurons are prominent feature of the synaptic organization of the 

cortex (Douglas & Martin, 2004). Also, we wanted to show that the proposed model is capable 

of simulating object-based attention (Roelfsema, 2006; Roelfsema & de Lange, 2016). 

Moreover, Wannig et al. (2011) found direct evidence for activity spreading among neurons 

that encode the same feature value in the primary visual cortex.  

The output of the presynaptic interactions g(u) is defined by the rectification 

nonlinearity of the form 

 

      max ,0g u u u


  . (6) 

 

In Equation (1), the term – g(y – xi – Ty) describes the output of the presynaptic terminal that 

delivers inhibition from interneuron y to excitatory node xi (Figure 4A). However, we did not 
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explicitly model the dynamics of retrograde signaling. We assumed that the release of the 

retrograde transmitter occurs simultaneously with the activation of the postsynaptic node and 

that it is proportional to its firing rate. Therefore, it is represented by the term – xi. 

Function g(u) ensures that the presynaptic terminal will release the inhibitory transmitter 

only when the electrical signal from node y exceeds the inhibitory retrograde signal –xi and the 

threshold for presynaptic activation, which is denoted as Ty. In other words, node xi will be 

inhibited only if y > xi + Tx. If this is not the case, node xi will effectively isolate itself from the 

inhibitory influence of node y. This is always the case for the winning node because x(t) > y(t) 

for t > 0. Moreover, this result extends to all other nodes whose input magnitude is sufficiently 

close to the maximal input. The strength of the inhibition is determined by parameter β1. In a 

similar vein, in Equation (2), the term –g(xi – y – Tx) describes the action of the retrograde signal 

that is released from inhibitory interneuron y on the presynaptic terminal that delivers excitation 

from node xi (Figure 4B). Here, parameter Tx describes the threshold for the activation of the 

presynaptic terminal of the excitatory node and β2 determines the strength of the excitation. 
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Figure 4. Retrograde inhibitory signaling (blue curved arrows) from excitatory node xi to the 

presynaptic terminal of inhibitory interneuron y (A) and from the inhibitory interneuron to the 

presynaptic terminal of the excitatory node (B). Both terminals compute half-wave rectification g(u) of 

their input. Terminals release respective inhibitory (A) or excitatory (B) neurotransmitter (straight 

horizontal arrows) only when they receive net positive input.  

 

We have proposed a model of a one-dimensional network, although it attempts to 

simulate phenomena that occur in 2-D, as illustrated by Figure 1. We have chosen to work with 

the 1-D version of the network simply because we want to focus on the analysis of its temporal 

dynamics and its ability to combine information over time. Without loss of generality, the 

computer simulations that are reported in section Computer Simulations should be considered 

as a cross-section of a 2-D network.  

For simplicity, the thresholds that control the activation of the excitatory and inhibitory 

nodes are all set to zero and are omitted from the model description. Parameters were set as 

follows: τx = 5; τy = 2; α = 1; β1 = 1; β2 = 10; Sd = 1; λ = 100; Td = 0.1; Tx = 0.1; and Ty = 0.1. 
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Parameters were chosen in a way to simultaneously achieve intersection and union. Systematic 

variations on the parameters α, β1 and β2 showed that intersection is observed when 1 ≤ (α, β1) 

≤ 5. In contrast, union is observed when 0.8 ≤ (α, β1) ≤ 1. Parameter β2 can be set to any value 

above the default without changing the results.  

 

 

3. MODEL EXTENSIONS 

 

The network that is defined by Equations (1) and (2) is chosen in a way that achieves 

the desired behavior with the minimal number of computational elements. This simplicity 

heuristic is important for understanding model properties without adding extra neuroscientific 

complexity (Ashby & Hélie, 2011). However, at the same time, this approach sacrifices 

anatomical and biophysical plausibility of the proposed model. In this section, we present 

several extensions and generalizations of the basic model that bring it closer to satisfying the 

neurobiological constraints.  

 

3.1. Inhibitory Pool 

 

The model has just one inhibitory interneuron for computational convenience, which is 

not realistic. It is known that excitatory neurons outnumber inhibitory neurons by a factor of 

four in the cortex (Braitenberg & Schüz, 1991). However, it is possible to design an F-WTA 

network with a pool of inhibitory interneurons and the appropriate ratio between excitatory and 

inhibitory nodes that achieves the same behavior as the original model. An extended F-WTA 

network is presented in Figure 5A. Here, each inhibitory interneuron receives input from a 

subset of the excitatory nodes. We depicted each excitatory subset as a vertical arrangement of 

four nodes that do not overlap in their projections to the inhibitory pool. Therefore, each 

excitatory node projects to just one inhibitory node. Naturally, this does not need to be the case. 

It is possible that each excitatory node projects to more than one node without compromising 

the network output. Importantly, all inhibitory interneurons are mutually connected. In addition, 

each inhibitory interneuron projects its output to all excitatory nodes (denoted by thick blue 

arrow). As in the original model, we assume that all inhibitory and excitatory nodes are 

endowed with the capability of retrograde signaling on their synaptic contacts.  

Within the pool of inhibitory nodes, retrograde signaling enables computation of the 

MAX function, as in the original model. To see this, consider the inhibitory node that receives 
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maximal input. Due to the retrograde signaling, it will reach a steady state that corresponds to 

the computation of the MAX function over input from its excitatory subset. Moreover, it will 

not receive inhibition from the other members of the pool. All other inhibitory nodes, which 

receive less excitatory support, will be silenced because their retrograde signaling is not 

sufficiently strong to prevent lateral inhibition from the winning node. However, if there are 

multiple inhibitory nodes with the same level of activity, they will remain active together. 

Finally, the winning nodes send inhibition to all excitatory subsets. Since excitatory nodes also 

engage in retrograde signaling, the nodes that receive maximal input will block inhibition and 

remain active. Therefore, the network output will look much like the original model because 

the MAX computation on the inhibitory nodes makes irrelevant the number of them that are 

active simultaneously.  
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Figure 5. Two variations of the F-WTA circuit design that are computationally equivalent to the basic 

circuit that is shown in Figure 2. (A) Circuit with a set of inhibitory nodes, which are denoted as yj. 

Each yj receives input from a subset of excitatory nodes. Inhibitory nodes compete with one another 

and the winning node encodes the maximum of its input. It delivers inhibition to all excitatory nodes in 

the same way as single inhibitory node y in the basic circuit. (B) Circuit with an additional set of 

excitatory nodes zj with long-range horizontal projections. These nodes propagate the locally 

computed maximum level of activity to all parts of the network. Therefore, the whole set of zj 

converges to a global maximum. Furthermore, they contact inhibitory nodes yj that deliver inhibition 

to a subset of excitatory nodes xi. 

 

3.2. Localized Inhibition 

 

An important shortcoming of the previous model is that it assumes that inhibitory 

projections extend across the whole network of excitatory units. This is clearly not the case in 

real neural networks, where the spatial spread of inhibition is limited. To account for this 

property, we have constructed a more elaborate version of the basic model, which is shown in 

Figure 5B. It contains a new pool zj of excitatory nodes with long-range projections. The zj 

nodes receive input from the subset of the xi nodes. Additionally, each zj node sends its 

projection to at least one yi node from the pool of inhibitory nodes. The number of z nodes must 

equal the number of inhibitory nodes yj so that they can be indexed by the same subscript j. 
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Again, we assume that the zj nodes are equipped with the ability of retrograde signaling on their 

synapses. Therefore, they also compute the MAX function over all their inputs, including 

feedforward input from the corresponding subset of xi nodes and recurrent input from other zj 

nodes. In this design, the maximum level of activity that is sensed by the xi nodes in one part of 

the network is easily propagated via zj nodes to all other parts of the network. Furthermore, zj 

nodes transfer this activity to inhibitory nodes. Therefore, each inhibitory node will eventually 

receive the maximal level of activity and apply it to the subset of xi nodes to which it is 

connected. In this design, it is not necessary for inhibitory nodes to interact with one another. 

The excitatory nodes xi that receive maximal input will block inhibition by their retrograde 

signaling and remain active in the same manner as described in the previous section. In this 

way, the proposed circuit achieves the same result as the original model. 

 

3.3. Output Functions 

 

The model employs threshold-linear output functions for the soma and the logistic 

sigmoid function for dendrites. This is inconsistent with the observation that somatic output 

also saturates and is also often modeled by the sigmoid function. However, in normal 

circumstances, neurons operate in a linear mode that is far from their saturation level 

(Rutishauser & Douglas, 2009). To provide a more systematic approach to the output functions 

that are used in the model, we introduce a piecewise-linear approximation to the sigmoid 

function sq(u) of the form     

 

                     

 

0 0

0q q

q q

if u

s u u if u S

S if u S

 


  
                                                      (7) 

 

where Sq denotes the upper saturation point, which can be set differently for different 

computational units 
 , ,q c d p

, which correspond to the somatic, dendritic, and presynaptic 

terminal outputs, respectively. With the output function sq(u) applied to all computational 

elements of a single node, the model equations, namely, Equations (1) and (2), can be restated 

as  
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and 
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.                                                (9) 

 

An important constraint of the model that is defined by Equations (8) and (9) is that saturation 

point for the dendritic output Sd should be chosen to be smaller than Sc, which is the saturation 

point of the somatic output. In this way, feedforward input Ii can be combined with the dendritic 

output without causing saturation at the output of the node. In contrast, if dendrites are allowed 

to saturate at the same activity level as the node, the dendritic output will overshadow the 

feedforward input. Consequently, the network will lose its sensitivity to the input changes. This 

is undesirable with respect to the requirements that are imposed by the sequential formation of 

the multiple Boolean maps. Therefore, the choice between the linear or the sigmoid output 

function for the node is not important if the dendritic output is restricted to a smaller interval 

relative to the output of the node itself.  

 

 

4. LINEAR STABILITY ANALYSIS 

 

4.1. Fixed Points 

 

Fixed point is found iteratively starting from the set of nodes receiving maximal input, 

xM. We assume that the winning nodes and inhibitory interneuron are activated above their 

thresholds, so we set [u]+ = u. Next, we observe that the winning nodes do not receive inhibition 

from the interneuron y since xM(t) > y(t) for t > 0. This holds because the activity of the 

inhibitory node is bounded above by xM + Tx > y where Tx is a positive constant. Then, retrograde 

signaling ensures that g(y – xM – Ty) = 0 for all times t. Consequently, nodes receiving maximal 

input are driven solely by excitatory terms. Since the recurrent excitation is bounded above by 

its asymptotic value Sd, dendritic output function f(u) in Equation (1) is replaced with Sd. This 

yields the following approximation to the steady state of the winning nodes: 
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                                                  M M dx I S  .                                                    (10) 

 

After the xM, inhibitory interneuron y also reaches its steady state because its activity is 

driven primarily by the input from xM. As the activity of y grows, terms g(xi – y – Tx) in Equation 

(2) vanish for all nodes that do not receive maximal input xi where i M . In contrast, the 

presynaptic terminals of xM are above the threshold for their activation just before y reaches 

equilibrium, that is, g(xM – y – Tx) > 0. Therefore, the output function of the presynaptic terminal 

g(u) can be replaced by u. Then, Equation (2) is solved as   

  

                                                  

 2

2 1

M xk x T
y

k









,                                                    (11) 

 

where k is the number of xM. When β2 is chosen to be sufficiently large, and/or there are many 

nodes with maximal input xM, then 

 

                                                     M xy x T 
 .                                                   (12) 

 

Continuity of the function defined by Equation (2) implies that y cannot grow above xM – Tx, 

that is, y(t) > xM (t) – Tx cannot hold at any time t unless y(t0) = xM (t0) – Tx at some earlier time 

t0 < t. However, equality y(t0) = xM (t0) – Tx implies that dy/dt = 0 at time t0 because g(xM (t0) – 

y(t0) – Tx) = 0. In other words, node y loses all its excitatory drive when it reaches xM – Tx. This 

is true irrespective of the number k of xM. Thus, node y computes the maximum over its input.  

The xM nodes, together with the inhibitory node, create a quenching threshold (QT) for 

the network, which is defined by 

 

                                                     y M x yQT y T x T T    
.                                                  (13) 

 

Grossberg (1973) introduced the concept of the quenching threshold to describe the property of 

contrast enhancement in recurrent competitive networks. Nodes whose activity is above QT are 

enhanced and stored in the memory state, while all nodes whose activity is below QT are 

suppressed and removed from the memory representation. In the same manner, the remaining 

excitatory nodes converge to one of two states, depending on whether they exceed QT or not: 
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QT and its relationship with the activity of the winning and non-winning nodes and 

inhibitory interneuron is illustrated in Figure 6. According to Equations (10), (11), and (14), the 

fixed-point linearly combines input and recurrent excitation. As maximal input increases or 

decreases, the fixed point will move up or down and track these changes. Moreover, the input 

may cease, and the winning nodes will settle into the activity level that is provided by the 

recurrent excitation alone, which is expressed as αSd. In other words, the network remembers 

who the last winner was. The same is true in the case where the winner is determined by 

transient cues that are applied sequentially on a sustained input. This is a protocol that is used 

in the computer simulations that are reported in section Computer Simulations. 

 

 

Figure 6. Relationship among the steady state of the winning node x1, inhibitory node y, and all other 

excitatory nodes in the network, x2 … xn. The activity of the winning node is given by the sum of its 

feedforward input I1 and the output of its dendrite mediating self- and nearest neighbor excitation, 

which is expressed as αSd. Inhibitory node y approximately converges to x1 – Tx. It sets the quenching 

threshold (QT) that separates excitatory nodes into two sets. Nodes x2 … xn are spared from inhibition 

if their activity is above the QT (dashed line); otherwise, they are silenced to zero (solid line). QT 

equals y – Ty (or x1 – Tx – Ty) because the activity of the inhibitory node must exceed the threshold on 

its presynaptic terminals that contact the excitatory nodes. 
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4.2. Linearization Near Fixed Points 

 

To simplify the stability analysis, we consider an F-WTA network with two excitatory 

nodes and one inhibitory node: [x1, x2, y]. This system has three fixed points: x1 is the only 

winner, x2 is the only winner, and both excitatory nodes are winners. To which fixed point the 

network will converge depends on the relationship between inputs I1 and I2.  

Local stability of the fixed point is estimated from the eigenvalues of the Jacobian 

matrix, which is the matrix of partial derivatives of the system of equations. If the real parts of 

all eigenvalues of the Jacobian are negative, the fixed point will be asymptotically stable 

(Rutishauser & Douglas, 2009). However, before we can compute the Jacobian matrix, we note 

that a linear-threshold function is continuous, but not differentiable. To sidestep this problem, 

we follow the approach that was described by Rutishauser et al. (2011) of inserting dummy 

terms that correspond to the derivate. That is, we need three separate dummy terms: ci and pxi, 

which correspond to the somatic and presynaptic output functions of excitatory node i, and a 

set of pyi dummy terms that describe the presynaptic output function of inhibitory node y. The 

dummy terms are defined as 
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Based on the above definition of the dummy terms, we have constructed the Jacobian 

matrix of the system that consists of Equations (1) and (2): 
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where D1f and D2f denote the partial derivatives of the sigmoid function with respect to x1 and 

x2. Now, we examine the Jacobian matrix at the three fixed points that are mentioned above. If 

x1 is the only winner, then c1 = 1. However, Dx1f ≈ 0 because the recurrent excitation of the 

winning node approaches its asymptotic value, which is Sd. In addition, py1 = 0 because the 

winning node blocks inhibition from node y, as discussed above. Node x2 is inhibited below its 
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somatic threshold, that is, c2 = 0. Presynaptic signaling by inhibitory node y blocks excitation 

from x1 and x2 is inactive, so px1 = px2 = 0. Consequently, the Jacobian matrix at the fixed point 

reduces to a diagonal matrix of the form  
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.  (17) 

 

All eigenvalues of the JW1 are negative, and the fixed point is asymptotically stable. In 

the case when x2 is the sole winner, the same arguments are applied to set the dummy terms, 

thereby leading to the same diagonal matrix JW2 as shown in (17). Moreover, if both excitatory 

nodes are winners, then c1 = c2 = 1, Dx1f = Dx2f ≈ 0 and px1 = px2 = 0. Again, the Jacobian matrix 

JW12 is diagonal. Thus, all three fixed points are asymptotically stable.  

The same analysis can be generalized to a network of arbitrary size and arbitrarily many 

fixed points. Retrograde signaling and dendritic saturation will ensure that the Jacobian matrix 

of any size will be diagonal and that the network dynamics will be independent of the network 

parameters, namely, α, β1, and β2. Local stability analysis suggests that the system behaves 

much like a feedforward network that is driven by the input. However, an important difference 

is that the F-WTA network has memory states like the recurrent network (Rutishauser & 

Douglas, 2009; Usher & Cohen, 1999).  

 

 

5. COMPUTER SIMULATIONS 

 

We performed a set of computer simulations to illustrate the model behavior. We 

employed a vector of 200 excitatory units and one inhibitory unit. Differential Equations (1) 

and (2) were solved numerically using MATLAB’s ode15s solver. The simulations were run 

for 250 time steps. In subsequent figures, we followed the convention that activity of the node 

at position i as a function of time is depicted by a shade of gray, with white representing the 

maximal value and black representing zero.  
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5.1. Simulation of the Formation of a Single Boolean Map 

 

 First, we demonstrate how a Boolean map arises in the F-WTA network in response to 

the presentation of the color cue, as illustrated by Figure 1A. In Figure 7A, we recreate a similar 

stimulus condition in the 1-D map. The input consists of red and green items of equal sizes, 

which are intermixed in space on a black background. Input magnitude I was set to 1 in both 

maps and to 0.2 in the empty space around items to represent spontaneous activity in the absence 

of visual stimulation. Initially, the top-down or attentional gain is set to Gm = 1 in both feature 

maps  ,m red green . At t = 50, the red color is attended, which is reflected in the input to 

the network by increasing the gain for all nodes in the Red map (Gred = 2) and simultaneously 

reducing the gain in the Green map by the same factor (Ggreen = 1/Gred = 1/2). Top-down gain 

is also applied to the empty space between items, which is consistent with the finding that 

feature-based attention spreads across the whole visual field (Saenz et al., 2002, 2003; Serences 

& Boynton, 2007). The duration of the top-down cue is 50 simulated time steps. For simplicity, 

top-down signals are suddenly switched on and off without exponential decay. At t = 150, the 

green color is cued in the same way.  
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Figure 7. (A) Simulation of the Boolean map formation in the F-WTA network in response to the 

sequential presentation of two color cues (red appeared between 50th and 100th and green appeared 

between 150th and 200th simulated time unit). (B) The same simulation with larger items and without 

gain modulation applied on the unattended feature map. 

 

At the beginning of the simulation, before the top-down signals are applied, the F-WTA 

network simply selects all presented items together, irrespective of their color. Next, when the 

red color is cued by applying top-down signals to the corresponding feature map, the network 

responds to the new input by selectively increasing and sustaining the activity of nodes that 

encode locations of red items in the input and suppressing locations that encode green items. 

That is, the network creates a Boolean map by highlighting the spatial pattern that is associated 

with the red color. Furthermore, due to a self-excitation, the network maintains locations of the 
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cued feature value in working memory after the top-down signals cease to influence the feature 

map. When the observer decides to switch attention to another feature value, the network can 

select the locations of the new feature value and suppress the locations that are associated with 

the previously cued value without requiring an external reset. Namely, the network is sensitive 

to input changes even though it also exhibits activity persistence.  

Importantly, the activity level at selected locations is invariant with respect to the 

number of active nodes. At the beginning of the simulation, the number of active nodes was 

four times larger than after the cue was delivered. However, the active nodes remained at the 

same activity level as they were at the beginning of the simulation. This is a consequence of 

retrograde inhibitory signaling in recurrent pathways. It prevents unbounded growth of 

inhibition due to the dynamic regulation of its strength. To illustrate this point further, we run 

another simulation with items that are almost double in size (Figure 7B). Even though the total 

size of the cued items is increased, the activity of the cued nodes converges to the same level 

as before. In this simulation, we also checked that the network successfully operates even if we 

remove gain reduction from the non-attended feature map.  

Next, we determined the minimal feature gain that must be applied on the input to 

produce the desired behavior. When the gain modulation is applied simultaneously on attended 

feature map GA and on unattended feature map GNA (where GNA = 1/GA), we found that GA ≥ 

1.7 is sufficient for creating a Boolean map and switching to another one. In contrast, when the 

gain modulation is not applied on the unattended feature map, as shown in Figure 7B, the feature 

gain in the attended map should be set to GA ≥ 2 to achieve the same behavior. 

Figure 8 illustrates that the F-WTA network can support space- and object-based 

attention alongside feature-based attention. When the spatial cue is applied to a single location 

in one of the feature maps, the network responds by selecting only this location. Neighboring 

nodes are not selected even though they are reciprocally connected to the cued node. The reason 

is that they receive weaker input relative to the cued node. Furthermore, recurrent excitation 

that arrives from the cued node is bound by the dendritic nonlinearity. Thus, it is not sufficiently 

strong to keep them active. Interestingly, when the spatial cue is removed, the network activity 

starts to propagate from the cued node towards the boundary of the whole item. In this case, the 

network selects not just the cued location, but all locations that are connected to it. Therefore, 

the F-WTA network exhibits object-based selection, which is consistent with 

neurophysiological studies that show spreading of enhanced activity along the shape of the 

object (Roelfsema, 2006). This property arises because the removal of the cue equalizes the 

input magnitude along the object, which allows activity enhancement to propagate via local 
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lateral connections. In addition, this simulation shows that spatial attention can be easily 

oriented toward a new location in a single jump without the need for attentional pointers that 

move attention across the map (Hahnloser et al., 1999). 

 

 

Figure 8. Simulation of space- and object-based attention in the F-WTA network. 

 

5.2. Simulation of the Intersection and Union of Two Boolean Maps 

 

Figure 9 illustrates that the model can sequentially combine two Boolean maps when 

the network is cued by top-down signals from two separate feature dimensions. In this 

simulation, we have employed a visual input that consists of red and green horizontal and red 

and green vertical bars, like those that are illustrated in Figure 1B. First, the F-WTA network 

is cued to select red bars, irrespective of their orientation. In the second step, it is cued to select 
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horizontal bars, irrespective of their color. However, green vertical bars are already suppressed 

and the top-down signal that is supplied to them is not sufficient to override the inhibition that 

arises from red vertical bars. The net result is the selection of a subset of red horizontal bars. In 

other words, the network activity converges to an intersection between a set of red bars and a 

set of horizontal bars, thereby resulting in the selection of red horizontal bars.  

 

 

Figure 9. Simulation of the intersection of red and horizontal items. 

 

Next, we examined how the network achieves the union of two Boolean maps (Figure 

10). Here, we assumed that the input consists of two non-overlapping components: colored 

squares that activate color maps but do not activate orientation maps, and achromatic horizontal 

and vertical bars that activate orientation maps but do not activate color maps, as shown in 

Figure 1C. Red-colored items occupy locations between 1 and 100 and oriented bars occupy 
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locations between 101 and 200. This closely resembles the stimulus that is used by Huang and 

Pashler (2007) to demonstrate the union of color and texture. Taken together, the data show that 

the union of two Boolean maps is possible only when two top-down cues overlap in time or 

when the second cue closely follows the withdrawal of the first cue. In Figure 10, the cue for 

the red map is applied in the interval [50, 100] and the cue for the horizontal map is applied in 

the interval [110, 160]. In this case, the F-WTA network converges to the union of red and 

horizontal items. However, when top-down cues do not overlap, as shown in Figure 11, the 

second cue overrides the network activity that remains from the first cue. We suggest that this 

property partly explains why the union is difficult to achieve, as observed by Huang and Pashler 

(2007).  

 

 

Figure 10. Simulation of the union of red and horizontal items. 
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In addition, we examine the boundary conditions on the choice of the feature gain 

parameter. We parametrically vary the feature gain in steps of 0.1 starting from G = 2 and 

moving below and above to determine when the ability to form the intersection or union breaks 

down. When the gain modulation is applied simultaneously on attended (GA) and unattended 

(GNA) feature maps, we find that GA should be chosen from the interval [1.5, 2.1] to achieve the 

intersection between two maps. When GA < 1.5, the network fails to segregate cued from non-

cued locations in the first step. In contrast, when GA > 2.1, the network successfully segregates 

cued from non-cued locations in the first step. However, the gain is too high, so all horizontal 

items are selected together in the second step. That is, the representation of red horizontal items 

is merged with the representation of green horizontal items. When GNA = 1 throughout the 

simulation, GA should be chosen from the interval [1.8, 2.0] to achieve intersection.  

With respect to the union of two maps, the feature gain GA should be chosen from the 

interval [1.4, 2.0] when GNA = 1/GA and from the interval [1.6, 2.0] when GNA = 1. When GA is 

chosen below the suggested intervals, feature gain is too weak, and the second cue will not be 

able to raise the activity level of the nodes that represent horizontal items above the quenching 

threshold. Therefore, the network ends up with the Boolean map of red items that is formed in 

the first step. When GA is chosen above the suggested interval, the network switches between 

the representation of the red items in the first step to the representation of the horizontal items 

in the second step. In this case, the feature cue is too high, and the activity of the nodes that 

represent horizontal items simply overrides the activity of the nodes that represent the red items. 

These constraints are derived from the situation in which the two top-down cues overlap in 

time. As shown above, temporal lag of the second cue relative to the first cue also destroys the 

ability of the network to form the union of two Boolean maps.  
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Figure 11. Breakdown of union of red and horizontal items when the delivery of top-down cues for red 

and horizontal items is separated by a large temporal gap. 

 

5.3. Simulation of Bottom-up Spatial Selection 

 

Finally, we have shown that when there is no top-down guidance, the network selects 

the most-salient locations based on the bottom-up salience that is computed within feature maps 

(Figure 12). We did not explicitly model competition among maps, but it is reasonable to 

assume that in a scene with many multi-featured objects, their input magnitudes (i.e., saliencies) 

will be different. Therefore, we arbitrarily assigned different input magnitudes to different 

items. As shown in Figure 12A, the F-WTA network selects the most salient object if the 

difference in input magnitude between the two most active nodes is sufficiently large. However, 

when this difference is small, as shown in Figure 12B, the F-WTA model chooses two most 
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salient items together. Furthermore, in both examples, the network activity retains the input 

amplitude of the winning item (or items), thereby illustrating the ability to compute the function 

maximum (Yu et al., 2002). 

The precision of saliency detection depends on the threshold for the activation of 

synaptic receptors on the inhibitory interneuron. In all reported simulations, it was set to Ty = 

0.1. If smaller values were chosen, the network would improve in terms of precision and be 

able to separate the two objects that are presented in Figure 12B. However, this comes at the 

price of losing the ability to form a union of two Boolean maps. Therefore, there is a trade-off 

between the precision of saliency detection and the ability to form Boolean maps.  

 

 

Figure 12. Selection of the most salient item in the absence of top-down guidance. (A) When the most 

salient item is sufficiently distinctive from other items, the F-WTA network selects it. (B) When the 

saliency of all items is relatively low, the F-WTA network may select more than one item because it 

has a limit on the precision by which it separates inputs of different magnitudes.  

 

An important aspect of stimulus-driven attentional control is attentional capture by 

peripheral cues. Behavioral studies have shown that the abrupt onset of a new object in a visual 

scene can automatically capture attention even if it is irrelevant for the current goal (Theeuwes, 

2010). Figure 13 illustrates the sensitivity of the F-WTA network to abrupt visual onset. To 
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simulate this effect, we have made the additional assumption that the network receives input 

not only from a sustained channel that is comprised of feature maps in V4 but also from a 

transient channel that responds vigorously only to changes in input (Kulikowski & Tolhurst, 

1973; Legge, 1978). Thus, when the abrupt onset is accompanied by a strong transient signal 

that exceeds the activity level of the currently attended item, the F-WTA network temporarily 

switch activity towards the location of the onset (Figure 13A). Here, the input at the locations 

that are occupied by the winning item in the center of the map was set to IW = 2. Input to all 

other items was set to Ii = 1. Finally, the transient input that appears on the sides of the map was 

set to IT = 4. It is sufficient to set IT ≥ IW + 0.8 to achieve sensitivity to abrupt onsets. Moreover, 

the same relation holds even if we choose a larger value for IW.  

Next, when abrupt onset produces only weak transient signals (IT = 2) that do not satisfy 

the inequality that is stated above (IW = 2), the activity in the F-WTA network resists abrupt 

onset and stays on the previously attended item (Figure 13B). This observation is consistent 

with behavioral findings that abrupt onset can be ignored (Theeuwes, 2010), perhaps by 

attenuating the response of the transient channel. Another possibility is that the top-down gain 

for the attended location can be increased so that it exceeds the activity of the transient channel. 

In this case, intense focus on the current object prevents attentional capture, which is consistent 

with the psychological concept of the attentional window (Belopolsky & Theeuwes, 2010). 
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Figure 13. Sensitivity to abrupt visual onsets. (A) When the transient signal that is produced by the 

abrupt onset of a new object is sufficiently strong, it temporarily draws attention to itself. (B) When 

the transient signal is weak, attention resists abrupt onset and stays on the item that was selected at 

the beginning of the simulation. 

 

 

6. DISCUSSION 

 

We have proposed a new model of the WTA network that can simultaneously select 

multiple spatial locations based on a shared feature value. We named the model the feature-

based WTA (F-WTA) network because the unit of selection is not a point in space or object, 

but rather an abstract feature value that is set by the top-down signals. We have demonstrated 

how the F-WTA network implements the central proposal of the Boolean theory of visual 

attention that there exists a spatial map that divides the visual space into two mutually exclusive 

sets. One set represents all locations that are occupied by the chosen feature value. The other 

set contains all other locations, which are not of interest. The Boolean map controls spatial 

selection and access to the consciousness (Huang & Pashler, 2007). Moreover, we have shown 

that the network successfully integrates information across space and time to form the 

intersection or union of two maps that are defined by different feature cues. Previous models of 

the WTA network are not capable of such integration because they require that the current 
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winner be externally inhibited to allow attentional focus to move from one location to another 

(Itti & Koch, 2000, 2001; Kaski & Kohonen, 1994). Another possibility to move activity across 

locations in the network is to introduce dynamic thresholds that simulate habituation or fatigue 

in individual neurons. In this case, current winner loses its competitive advantage due to the 

raise of its threshold. This allows non-winners to gain access to working memory (Horn & 

Usher, 1990). However, both approaches are not suitable for forming the intersection or union 

of a set of previous winners and a set of later winners.  

Another important property of the F-WTA network that sets it apart from previous 

models of WTA behavior is the ability to select and store arbitrarily many locations in the 

memory. This is achieved by inhibitory retrograde signaling, which effectively isolates winning 

nodes from mutual inhibition. First, the amount of inhibition in the network is significantly 

reduced because the inhibitory interneuron computes the maximum instead of the sum of the 

recurrent input that it receives from the excitatory nodes. Second, the winning excitatory nodes 

release their retrograde signals and block inhibition from the interneuron. Consequently, 

arbitrarily many winners can participate in representing the selected locations without 

degrading their activation. In other words, there is no capacity limit on the number of objects 

that can be simultaneously selected. This is consistent with recent behavioral findings that 

suggest that our ability to select multiple objects is not fixed. Rather, spatial attention should 

be considered a fundamentally continuous resource without a strict capacity limit (Alvarez & 

Franconeri, 2007; Davis et al., 2000; Davis et al., 2001; Liverence & Franconeri, 2015; Scimeca 

& Franconeri, 2015).  

In addition, the network is sensitive to the sudden appearance of a new object in the 

scene, which suggests that it can also be guided by bottom-up feature cues (Theeuwes, 2013). 

We hypothesize that the network receives strong input from the transient channel. Such input 

overrides the network’s current memory state, thereby making it sensitive to abrupt onsets. 

Moreover, the transient channel can be activated by any type of change in the spatiotemporal 

energy of the input, and not just by the sudden appearance (or disappearance) of objects. For 

example, it will be activated by a sudden change in the direction of motion (Farid, 2002). When 

the network simultaneously receives transient input from different locations, they all will be 

selected together. In this way, the network achieves temporal grouping of synchronous transient 

input. That is, the network can discover spatial structures that are defined purely by temporal 

cues (Lee & Blake, 1999; Rideaux et al., 2016).  
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6.1. Biophysical Considerations 

 

As noted above, the model of the F-WTA network rests upon three key computational 

elements: the dendrite as an independent computational unit, retrograde signaling on synaptic 

contacts, and computing the maximum over inputs. Here, we review supporting neuroscientific 

evidence that suggests that all three biophysical mechanisms are plausible candidates for 

computation in real neural networks.  

There is a growing body of evidence that the excitatory pyramidal cell should not be 

viewed as a single electrical compartment. Rather, it consists of multiple independent synaptic 

integration zones arranged in a two-layer hierarchy (Branco & Häusser, 2010; Häusser & Mel, 

2003; London & Häusser, 2005; Mel, 2016). Using a detailed biophysical model of the 

pyramidal neuron, Poirazi et al. (2003) showed that its output is well approximated by a two-

layer neural network. In the first layer of the network, dendrites independently integrate their 

synaptic input and produce sigmoidal output. In the second layer, the dendritic output is 

summed at the soma to produce the neuron’s firing rate. Importantly, the somatic and dendritic 

output functions need not be the same (Jadi et al., 2014). For example, Behabadi and Mel (2014) 

showed that the soma of the model neuron generates nearly linear output, while the dendritic 

output is sigmoid. In our model, the dendrite conveys recurrent excitation to the node. Due to 

the dendritic nonlinearity, there is no risk of unbounded activity growth in the node. 

Furthermore, the dendritic output is summed with the external input at the soma of the node. 

By using a linear output function at the soma, we have ensured that the F-WTA network remains 

sensitive to input fluctuations.  

Synaptic transmission can be dynamically regulated in an activity-dependent manner, 

as shown by the existence of depolarization-induced suppression of inhibition (DSI) (Pitler & 

Alger, 1992) and depolarization-induced suppression of excitation (DSE) (Kreitzer & Regehr, 

2001). DSI (DSE) refers to the reduction in inhibitory (excitatory) post-synaptic potentials 

following depolarization of the postsynaptic cell. These processes have been observed in 

various brain regions, including the cerebellum, hippocampus, and neocortex. A retrograde 

messenger that is released from postsynaptic cell due to its depolarization mediates DSI and 

DSE. After release, the retrograde messenger binds to the receptors at the presynaptic axon 

terminals and suppresses the release of the transmitter. Based on these properties, Regehr et al. 

(2009) suggested that a possible physiological function of DSI and DSE is to provide negative 

feedback that reduces the impact of the synaptic input on the ongoing neural activity.  
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The model behavior rests upon the assumption that the inhibitory interneuron computes 

the maximum instead of the sum of its inputs. There is some direct physiological evidence that 

real cortical neurons indeed compute the MAX function. For example, Sato (1989) examined 

responses of neurons in the primate inferior temporal cortex to the presentation of one or two 

bars in their receptive field. He concluded that the responses to two bars that were presented 

simultaneously were well described by the maximum of the responses to each separately. In a 

similar vein, Gawne and Martin (2002) recorded the activity of neurons in primate V4 and 

found that their firing rate in response to the combination of stimuli is best described by the 

maximum function over the firing rates that are evoked by each stimulus alone. Furthermore, 

Lampl et al. (2004) directly measured membrane potentials in the complex cells of the cat 

primary visual cortex and found evidence for the MAX-like behavior in response to the pair of 

optimal bars.  

 Indirectly, the importance of the MAX-like operation in cortical information processing 

can be appreciated by considering the many computational models of visual functions that have 

employed it in simulating rich and complex datasets. For example, Riesenhuber and Poggio 

(1999) employed hierarchical computation of the MAX function in a model of invariant object 

recognition. Spratling (2010, 2011) used it in simulating a large range of classical and non-

classical receptive field properties of V1 neurons. Moreover, Tsui et al. (2010) used MAX-like 

input integration to explain diverse properties of MT neurons and Hamker (2004) used it in his 

model of top-down guidance of spatial attention. Furthermore, Kouh and Poggio (2008) 

developed a canonical cortical circuit that is capable of many nonlinear operations, including 

computation of the MAX function. Here, we have shown that a single inhibitory node that is 

endowed with retrograde signaling can compute the maximum. 

 Based on the proposed model, we have derived two testable predictions. The cortical 

network that is involved in spatial selection will contain inhibitory interneurons that can 

compute the MAX function. Moreover, both the excitatory and inhibitory neurons in this 

network will be endowed with the anatomical structures that support retrograde signaling 

(presynaptic receptors and postsynaptic transmitter release sites).  

 

6.2. Comparison with Other WTA Network Models 

 

Several models of biophysical mechanisms have been proposed for implementing WTA 

behavior in a neural network, including linear-threshold units (Hahnloser, 1998; Rutishauser & 



 

121 

 

Douglas, 2009), non-linear shunting units (Fukai & Tanaka, 1997; Grossberg, 1973), and 

oscillatory units (Borisyuk & Kazanovich, 2004; Wang, 1999).  

A simple model of a competitive network that is based on linear-threshold units has 

been extensively studied. Stability analysis revealed that this network requires fine-tuning of 

the connectivity to achieve stable dynamics that can perform cognitively relevant computations, 

such as choice behavior (Hahnloser, 1998; Hahnloser et al., 2003; Rutishauser et al., 2015). 

Recently, Binas et al. (2014) showed that a biophysically plausible learning mechanism could 

tune the network connections in a way that keeps the network dynamics in the stable regime. 

Here, we have shown how dendritic and synaptic nonlinearities ensure that the network 

dynamics near fixed points depends only on the time constants of the nodes and not on the 

parameters that control recurrent excitation and lateral inhibition. Therefore, a precise balance 

between excitation and inhibition is not necessary for achieving a stable memory state. 

Moreover, the network is sensitive to the input and can iteratively combine the current memory 

state with new input to form the intersection or union of them.  

An important problem for WTA networks that are based on the linear-threshold or 

sigmoid output functions is that they lack a mechanism for controlling inhibition between the 

winning nodes. Therefore, they have limited capacity to represent multiple winners. Usher and 

Cohen (1999) showed that their activation decreases up to the point of complete inactivation as 

the number of winning nodes increases. This is due to the increased amount of mutual 

inhibition. The problem cannot be solved simply by reducing the strength of the lateral 

inhibition because it is not known in advance how many locations will be cued. On the other 

hand, feature-based spatial selection requires that the network be able to adjust automatically 

the amount of inhibition to accommodate the selection of a very small or very large number of 

winners.  

Grossberg (1973) proposed a recurrent competitive map model that was based on 

shunting non-linear interaction between the synaptic input and the membrane potential. The 

output of the model depends on the exact form of the signal function that is used to convert 

membrane potential into the firing rate. When the signal function is chosen to grow faster than 

linear, the network exhibits WTA behavior. By contrast, when the signal function is sigmoid, 

the network can select multiple winners if they have similar activity levels. The most important 

property of this model is the existence of the quenching threshold. All nodes whose activity is 

above QT are enhanced and all nodes whose activity is below QT are suppressed. This behavior 

is similar to the operation of the F-WTA network that was proposed here. However, an 

important difference is that in the shunting model, QT is fixed and dependent on the parameters 
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of the network. In contrast, the feature-based WTA network exhibits dynamic QT that depends 

on the input to the network and not on its parameters. In this way, the F-WTA network rescales 

its sensitivity to the input fluctuations.  

More recently, a version of the recurrent competitive map was applied in modeling 

object-based attention (Fazl et al., 2009). It was shown that sustained network activity in the 

model PPC encompasses the whole object as an attentional shroud around it. Such spatial 

representation of a single object supports view-invariant object recognition within a larger 

neural architecture, namely, ARTSCAN. In an extension of the model, Foley et al. (2012) 

proposed two separate competitive networks that account for distinct properties of object- and 

space-based attention. A network with strong inhibition is limited to the selection of a single 

object. The other network utilizes weaker inhibition to support multifocal spatial selection. To 

increase the capacity of this network to represent multiple objects, Foley et al. (2012) suggested 

that the amount of lateral inhibition could be controlled externally. As the number of objects 

that should be selected together increases, the lateral inhibition should become weaker to 

counteract the effect of the larger number of nodes that participate in the competition. In 

contrast, the F-WTA network does not require such external adjustments of the strength of the 

lateral inhibition to accommodate the selection of arbitrarily many objects of arbitrary size. 

Moreover, in the F-WTA network, object-based and multifocal spatial attention coexist within 

the same circuit. Whether the network exhibits object-based spatial selection depends on the 

type of cue that is presented to the network and not on its parameters. 

Wang (1999) proposed a model of object-based attention that relies on the phase 

synchronization and desynchronization among oscillatory units. At each location of the 

recurrent map, there is a pair of excitatory and inhibitory units with distinct temporal dynamics 

that creates a relaxation oscillator. Excitatory units are also mutually connected with their 

nearest neighbors and with a global inhibitor. The network is initialized with random phase 

differences between oscillators at different network locations. The activity of the global 

inhibitor further enforces phase separation among excitatory units. However, local excitatory 

interactions among nearest neighbors oppose global inhibition and result in phase 

synchronization that spreads among nodes that encode the same object. The net result of these 

interactions is temporal segmentation and selection of one active object representation at a time 

in a multi-object input image. Importantly, the network can switch its activity from one object 

representation to another. However, this transition is generated internally by the oscillator 

dynamics. It is not possible to drive the object selection by external cues such as top-down gain 

control or bottom-up cues such as abrupt onsets. Moreover, it is not possible to enforce 
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simultaneous selection of more than one object by a joint feature value because the global 

inhibitor will desynchronize all nodes that encode non-connected items. Therefore, it is not 

clear how synchronous oscillations could support feature-based attentional selection. Taken 

together, it is still an open issue whether they are relevant for perception and cognition (Ray & 

Maunsell, 2015).  

 

6.3. Limitations 

 

The proposed model of spatial selection successfully simulates the formation of the 

Boolean map and its elaboration by the set operations of intersection and union but does not 

fully implement all aspects of the theory that was proposed by Huang and Pashler (2007). 

Precisely, it does not explain why attention is limited to only one feature value per dimension 

or how the observer sequentially chooses one feature value after another or combines feature 

dimensions into intersections or unions of Boolean maps. It is likely that this severe limitation 

arises from some form of the WTA network. However, this constraint requires a more elaborate 

model of the interactions among the spatially invariant representation of the feature values in 

the IT cortex and the interactions between the IT and the prefrontal cortex, where decisions and 

plans are made.  

 In all simulations that are reported here, we kept items segregated in space. This was 

not the case in the stimuli that were used by Huang and Pashler (2007). They employed a matrix 

of colored squares that were connected to one another. This is because activity spreading can 

occur among adjacent nodes even if they encode different feature values. Activity spreading is 

observed after top-down signals stop favoring one feature value over the other. In this case, all 

feature maps contribute equally to the input of the F-WTA network and the network is no longer 

able to discriminate between selected and unselected feature values. One way to solve this issue 

is to assume that the top-down signals are constantly present during the whole trial. In this way, 

the activity magnitude on the cued locations is kept above that on the non-cued locations. 

Therefore, non-cued locations are treated as background noise and suppressed, despite their 

proximity to the cued locations. Another possibility is to impose boundary signals that act upon 

recurrent collaterals of the nodes in the F-WTA network in a way that is similar to how activity 

spreading is stopped in the network models of brightness perception (Grossberg & Todorović, 

1988), visual segmentation (Domijan, 2004), and figure-ground organization (Domijan & Šetić, 

2008).  
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Finally, input to the network does not follow the distance-dependent activity profile that 

is usually observed in the visual cortex. However, this is not a critical issue for the model’s 

performance because the precision of selection depends on the thresholds for presynaptic 

terminal activation, namely, Tx, and Ty. If they are set to very small values, the network will 

tend to select the centers of the objects when the input pattern is convolved with a Gaussian 

filter. In contrast, if they are set to larger values, the network will be able to select extended 

parts of the objects and possibly even the whole objects. In the same way, the model achieves 

resistance to the input noise. As thresholds are set to larger values, the network can tolerate a 

larger amount of noise. However, this comes at a cost of less-precise selection, as demonstrated 

by the simulation that is shown in Figure 12. 

 

 

7. CONCLUSIONS 

 

We have demonstrated how the feature-based WTA network achieves spatial selection 

of all locations that are occupied by the same feature value without suffering from capacity 

limitations. The network responds to the top-down cue by storing in memory spatial pattern that 

corresponds to the cued feature value, while non-cued feature values are suppressed. In this 

way, we have shown how the Boolean map is formed. In addition, we have shown that it is 

possible to create more complex spatial representations that involve the intersection or the union 

of two or more Boolean maps. In this way, the F-WTA network goes beyond the capabilities of 

previous models of the competitive neural network, which cannot integrate information across 

space and time. Our work suggests that dendritic nonlinearity and retrograde signaling are 

biophysically plausible mechanisms that are essential for model success.  
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ABSTRACT 

 

 

Behavioral and neural data suggest that visual attention spreads along contour segments to bind 

them into a unified object representation. Such attentional labeling segregates the target contour 

from distractors in a process known as mental contour tracing. A recurrent competitive map is 

developed to simulate the dynamics of mental contour tracing. In the model, local excitation 

opposes global inhibition and enables enhanced activity to propagate on the path offered by the 

contour. The extent of local excitatory interactions is modulated by the output of the multi-scale 

contour detection network, which constrains the speed of activity spreading in a scale-

dependent manner. Furthermore, an L-junction detection network enables tracing to switch 

direction at the L-junctions, but not at the X- or T-junctions, thereby preventing spillover to a 

distractor contour. Computer simulations reveal that the model exhibits a monotonic increase 

in tracing time as a function of the distance to be traced. Also, the speed of tracing increases 

with decreasing proximity to the distractor contour and with the reduced curvature of the 

contours. The proposed model demonstrated how an elaborated version of the winner-takes-all 

network can implement a complex cognitive operation such as contour tracing. 

 

Keywords: contour tracing; object-based attention; perceptual grouping; recurrent competitive 

map; winner-takes-all 
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1. INTRODUCTION 

 

 Vision starts with the parallel registration of features such as color, shape, or motion in 

dedicated processing streams (Lennie, 1998). The output of feature detectors is further 

elaborated by a set of Gestalt grouping rules to form a spatial representation of perceptual 

belongingness among objects and of figure-ground relationships (Wagemanas, 2014). Although 

the perceptual organization of a scene according to Gestalt rules involves sophisticated 

computations, it is not sufficient to extract all information that is of interest to the observer 

(Tsotsos et al., 2018). For instance, the perception of spatial relations between distal image 

parts, such as whether they are connected or whether they lie inside or outside of the same 

bounding surface, cannot be computed by any type of spatially limited feature detectors 

(Minsky & Papert, 1988). Figure 1 illustrates this fact. Whether the patterns presented in Figure 

1A and 1B contain one or two black spirals is not immediately apparent.  

 

 

Figure 1. The spiral problem. The task is to determine whether one (A) or two black spirals (B) exist 

in the image. The problem can be solved by mentally tracing the contour. This is an example of a 

visual routine. 
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Ullman (1984, 1996) suggested that human observers comprehend spatial relations by 

applying visual routines on the representation offered by early vision. Visual routines refer to a 

set of cognitive operations that engage attention to bind together parts of the scene that remained 

ungrouped by the early visual representation. Attention labels distant features to render their 

spatial relations explicit. In a similar vein, Roelfsema and Houtkamp (2011) distinguished 

between base grouping, which depends on a fast extraction of image features and their 

conjunctions, and incremental grouping, which involves the engagement of slow, serial 

labeling of image elements that belong to the same perceptual group. Incremental grouping 

relies on object-based attention to highlight the representation of one perceptual group in an 

input image composed of many competing groups. Incremental grouping requires the 

establishment of dynamic links between neurons encoding features of the attended object and, 

at the same time, disabling connections to neurons encoding an unattended object.  

Mental contour tracing is an example of a visual routine or incremental grouping process 

that has been extensively studied at both psychological and neural levels. It is engaged when 

we attempt to determine whether two image regions are connected, as illustrated in Figure 1. 

The detection of connectedness is important because connected image parts are likely to belong 

to the same objects, whereas disconnected parts usually belong to different objects (Roelfsema 

& Singer, 1998). In the laboratory, contour tracing is studied by a task where observers are 

required to determine whether two dots lie on the same contour in a pattern consisting of two 

(or more) intermingled contours. A typical finding is that the time it takes to provide an answer 

increases monotonically, but not linearly, with the distance between dots on the contour. The 

key factor determining the speed of tracing is the distance on the contour, and not the Euclidean 

distance between the dots, which is kept constant (Jolicoeur et al., 1986; Pringle & Egeth, 1988). 

Furthermore, tracing exhibits scale invariance since the absolute size of the contour does not 

influence the speed of tracing. This suggests the involvement of multiple spatial scales 

(Jolicoeur & Ingleton, 1991).  

To isolate relevant factors contributing to the dynamics of tracing, Jolicoeur et al. (1991) 

devised simple stimuli consisting of a set of parallel straight lines or parallel curved lines. An 

example of the type of stimuli they used is depicted in Figure 2. Jolicoeur et al. (1991) 

systematically varied the distance between the target and distractor contours (Figure 2A–D) and 

the amount of curvature in the curved contours (Figure 2E–H) to measure their impact on the 

dynamics of tracing. Their results revealed that (a) the tracing time increases monotonically and 

roughly linearly with the length of the contour, (b) the tracing speed decreases with decreased 

spacing between the target and distractor contours, and (c) the tracing speed decreases with 



 

137 

 

increased contour curvature. These findings help to explain why tracing times were not a linear 

function of the distance in studies employing two contours that wiggle around each other. In 

such stimuli, the distance between the target and distractor contours, as well as their curvature, 

vary considerably along the path that needs to be traced. Therefore, we will focus on the results 

of Jolicoeur et al.’s (1991) study in our modeling efforts. 

 

 

Figure 2. The stimuli similar to those used by Jolicoeur et al. (1991) to examine the effect of distractor 

proximity (top row) and contour curvature (bottom row) on the dynamics of contour tracing. The task 

is to determine whether two dots lie on the same contour. The tracing time reduces as the distance 

between the target and distractor contours increases from very small (A), across small (B) and 

medium (C), to large (D). Also, when the proximity between contours is kept constant, the tracing time 

reduces as a function of contour curvature from large (E), across medium (F) and small (G) 

curvatures, to a straight contour (H). 

  

Several studies examined the question of whether attention moves or spreads along the 

contour. According to the zoom lens model, attention makes discrete jumps from one part of 

the contour to the next. The size of jumps is flexibly adjusted to avoid making mistakes 

(McCormick & Jolicoeur, 1991, 1994). Therefore, the size of the jump is smaller when the 
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target contour is near the distractor, and it increases when the distractor contour is further away. 

Crundall et al. (2008) provided further support for this model by demonstrating that participants 

do not notice changes that occur near the beginning of the contour, when the tracing operator 

has sufficient time to move away from the starting point.  

On the other hand, three studies (Houtkamp et al., 2003; Roelfsema et al., 2010; Scholte 

et al., 2001) found that tracing involves highlighting all elements of the same contour. These 

results imply that tracing operates similarly to object-based attention: it selects all spatial 

locations occupied by the same object. In other words, tracing creates a visual representation 

where a grouped array of locations is selected (Cosman & Vecera, 2012; Hollingworth et al., 

2012; Vatterott & Vecera, 2015). 

Neural recordings in the monkey primary visual cortex (V1) suggest that contour tracing 

is associated with elevated firing rates in neurons whose receptive fields fall on the target 

contour, relative to neurons whose receptive fields fall on the distractor contour (Roelfsema et 

al., 1998). Next, it was found that firing rate modulation occurs earlier for neurons located near 

the start of the tracing process (fixation point) and later for neurons located further away along 

the contour. Importantly, the response enhancement for neurons encoding early segments of the 

contour remained approximately constant during the whole trial, thus providing direct support 

for the idea that attention spreads rather than moves along the contour (Roelfsema et al., 2003). 

Moreover, the timing of the response enhancement on neurons encoding a distal contour 

segment depends on how close the target and distractor contour are placed (Pooresmaeili & 

Roelfsema, 2014). If there is a small gap between proximal segments of the target and distractor 

contours, then the response enhancement on the distal segment of the target contour is delayed 

relative to the stimulus with a wider gap. This is consistent with the behavioral findings on the 

effect of contour spacing on the speed of tracing (Jolicoeur et al., 1991).  

Wannig et al. (2011) found that enhanced activity is initiated by the external cue and 

automatically spreads from the cued to the neighboring neurons if they share the same feature 

selectivity, namely color or orientation. Interestingly, attentional modulation in the contour 

tracing task was not observed in all tested neurons. About half of the neurons were not affected 

by the attention at all, and they were labeled as N-neurons – as opposed to A-neurons, which 

exhibited response enhancement (Pooresmaeili et al., 2010). Finally, it should be noted that the 

reviewed studies were not able to discern whether the source of the tracing signal arises from 

the horizontal connections within the V1 or via feedback connections from the extrastriate 

cortex. Roelfsema and Houtkamp (2011) proposed that contour tracing is a consequence of the 

interactions within and between cortical areas V1, V2, and V4 organized in a dynamic 
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processing hierarchy termed a growth cone. The size of the cone is dynamically adjusted 

depending on the stimulus conditions. When the target and distractor contours are far apart, a 

larger cone is activated that encompasses higher hierarchical levels containing neurons with 

larger receptive sizes. Contour tracing consequently advances faster along the contour (see also 

Jeurissen et al., 2016; Pooresmaeili & Roelfsema, 2014). 

The aim of the present study is to develop a neurocomputational account of the 

dynamics of mental contour tracing consistent with the reviewed behavioral and neural data. 

The model rests upon a feature-based winner-takes-all (F-WTA) network, recently proposed by 

Marić and Domijan (2018). The F-WTA network is a recurrent competitive map with local 

interactions between excitatory units and global inhibition mediated by a single inhibitory unit. 

It is capable of simultaneous selection of many winners based on top-down guidance. We have 

demonstrated how to embed the F-WTA network into a larger neural architecture incorporating 

multi-scale contour and L-junction detection networks. The output of the contour and L-

junction detection is used to guide the lateral excitatory interactions within the F-WTA network. 

In this way, enhanced activity in the F-WTA network spreads along the target contour as fast 

as possible without making mistakes – that is, without activity spillover to the distractor 

contour.  

 

 

2. MODEL DESCRIPTION 

 

2.1. Model Overview 

 

The neural model of contour tracing consists of three components: The F-WTA network, 

the contour detection network (CDN), and the L-junction detection network (LDN). In this 

chapter, the components are informally described first to provide an understanding of how they 

contribute to the tracing. In the second part, the formal specification of each model component 

is provided. 

 

2.1.1. Feature-based Winner-Takes-All Network  

 

Computational models of visual attention rely on competitive neural networks to find 

the locations of greatest importance or saliency (Itti & Koch, 2001; Tsotsos, 2011). An extreme 

form of competition is implemented in the winner-takes-all (WTA) network, which selects only 

the most active location in the input image (Koch & Ullman, 1985; Yuille & Geiger, 2003). A 
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physiologically realistic model of cortical competition is a WTA network with asymmetric 

connectivity. It consists of an array of excitatory nodes that are reciprocally connected to a 

single inhibitory interneuron (Rutishauser & Douglas, 2009; Rutishauser et al., 2011). Such an 

anatomical arrangement creates a global blanket of inhibition to excitatory nodes (Fino et al., 

2013). However, the WTA network quickly loses its capacity to represent winners when the 

number of nodes receiving maximal input increases (Haarmann & Usher, 2001; Usher & 

Cohen, 1999). To prevent this decline, it is important to control excessive inhibition in a 

situation where many winners need to be selected simultaneously, as required by feature- and 

object-based attention. 

We recently developed a model of the asymmetric cooperative-competitive network 

depicted in Figure 3. The F-WTA network is capable of simultaneous selection of an arbitrary 

number of locations based on their shared feature value (Marić & Domijan, 2018). It 

incorporates dendrites (Häusser & Mel, 2003; London & Häusser, 2005; Mel, 2016) and 

synapses (Abbott & Regehr, 2004; Regehr et al., 2009) as independent computational units. 

Model dendrites mediate recurrent excitation between adjacent neurons, and their nonlinear 

output function prevents unbounded growth of neural activity. Furthermore, the retrograde 

inhibition of synaptic transmission enables the inhibitory interneuron to compute the maximum 

function instead of the sum over its input signals (Kaski & Kohonen, 1994). The inhibitory 

interneuron sets a dynamic quenching threshold (QT) for the excitatory nodes (Grossberg, 

1973). It inhibits all nodes that are below the QT and spares all nodes that are above the QT. 

Importantly, the QT tracks the activity of the winning nodes when it changes because of the 

change in the input amplitude. In this way, the network performs a state-dependent computation 

driven by external inputs (Rutishauser & Douglas, 2009). A detailed description of the way in 

which the QT relates to the network activity is provided in the Appendix.  

Retrograde inhibition on the excitatory nodes also ensures that winners do not inhibit 

one another, thereby enabling simultaneous selection of the arbitrary number of winners if they 

share the same input amplitude. This leads to a form of winners-share-all solution rather than 

to a more restrictive selection of a single node (Fukai & Tanaka, 1997). With these properties 

of the F-WTA network, we were able to simulate many important findings regarding the 

formation of feature-based spatial maps and their elaboration by the set operations of 

intersection and union (Huang & Pashler, 2007).  
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Figure 3. A feature-based winner-takes-all (F-WTA) network. A set of excitatory nodes (white disks) 

are reciprocally connected to a single inhibitory node, depicted as a gray disk (A). Both types of nodes 

release retrograde messengers that inhibit the transmitter release from the presynaptic terminal in 

proportion to the node’s activity. This retrograde signaling creates a negative feedback loop that 

dynamically regulates the synaptic transmission between excitatory and inhibitory nodes. In addition, 

each excitatory node receives direct feedforward input and recurrent input from its dendrite, which is 

modeled as a separate compartment (B). The dendrite receives the node’s self-excitation and recurrent 

collaterals from the neighboring nodes. 

 

2.1.2. Contour Detection Network 

 

In the original formulation of the F-WTA network, lateral excitatory connections among 

nodes are isotropic and restricted to nearest neighbors. Such a connectivity scheme results in 

slow pixel-by-pixel activity spreading in all directions. Here, we demonstrate how to enrich the 

lateral connectivity of the F-WTA network in order to simulate properties of mental contour 

tracing. First, we assume that separate F-WTA networks exist for each orientation. Excitation 

within each network is thus restricted to the direction of preferred orientation only. In this way, 

activity spreading in one orientation will not jump to other orientations at the contour junction. 

For computational simplicity, we employed only two orientations: horizontal and vertical. Next, 

to account for a variable speed of contour tracing, we propose that the F-WTA nodes do not 
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interact directly with one another. Rather, they are engaged in a feedback loop with the same-

oriented multi-scale CDN. In particular, lateral excitatory interactions within the F-WTA 

network are multiplicatively gated by the output of the CDN (Figure 4).  

We adopted a simple model of contour detection with two orientations (horizontal and 

vertical) and four spatial scales (tiny, small, medium, and large, denoted as 1, 2, 3, and 4, 

respectively). The input image is convolved with a set of multi-scale, even-symmetric Gabor 

filters to simulate oriented receptive fields known to exist in the visual cortex (Daugman, 1980; 

Marčelja, 1980). The output of the convolution is provided by c-units. In addition, a-units 

receive scale-dependent feedback projections from the F-WTA network with the same 

orientation preference. Importantly, the lateral extent of the feedback projections to the a-units 

scales with the size of the receptive field of the corresponding c-units, as illustrated in Figure 

4. The output of the a-units is multiplicatively gated by the c-units before it is fed back to the 

F-WTA network. In this way, the c-units control the size of the integration zone over which the 

F-WTA network samples the activity of its neighbors via a-units. The same connectivity pattern 

is replicated in the vertical F-WTA network, except that the lateral interactions extend in the 

vertical instead of horizontal direction. The distinction between the a-units, which receive 

attentional signals from the F-WTA network, and the c-units, which are unaffected by attention, 

is reminiscent of the distinction between the A- and N-units found in the visual cortex 

(Pooresmaeili et al., 2010). Finally, it should be noted that we designed the model of c-units to 

be as simple as possible. However, it is not too difficult to replace this model with more 

sophisticated models of contextual interactions in the visual cortex that are capable of robust 

contour detection (Grossberg et al., 1997; Hansen & Neumann, 2004; Ursino & La Cara, 2004). 
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Figure 4. A multi-scale neural model of contour tracing. In the model, the contour detection network 

(CDN) controls the scale-dependent excitatory feedback loop of the F-WTA network. For simplicity, 

we depict the connections within the horizontal F-WTA network only. In the CDN, the input image is 

convolved with a set of Gabor filters of four different sizes to produce feedforward output (c1, c2, c3, 

c4). The filter’s output multiplicatively gates the feedback signals arising from the F-WTA network (a1, 

a2, a3, a4). The size of the window over which the F-WTA activity is sampled in the a-units correlates 

with the size of the Gabor filter in the c-units. An externally supplied spatial cue drives the activity 

spreading by temporarily increasing the activity of one of the nodes in the network.  

 

It is important to emphasize that the F-WTA network, not the CDN, is a carrier of the 

activity spreading related to attention. The role of the CDN is to open or close the feedback 

loops between neighboring nodes in the F-WTA in a scale-dependent manner. The CDN 

modulates the size of lateral interactions between same-oriented nodes in the F-WTA network. 

Figure 5 illustrates how the presence or absence of CDN activity at a certain scale widens or 

narrows the size of the integration window within the F-WTA network. The CDN network 

serves as a cognitive blackboard on which the F-WTA network writes and reads its activity in 

order to gauge the size of the next tracing step (Roelfsema & de Lange, 2016). At each location 

in the map, the F-WTA network broadcasts its message to all scales of the CDN and waits to 

observe which scale will respond back. As more scales are activated to a suprathreshold level 
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in the CDN, more distant F-WTA nodes may exchange excitation and thus speeds up the 

progress of activity spreading. Further details about this process are provided in Sections 2.2.1. 

and 2.2.2.  

 

 

Figure 5. Scale-dependent interactions between the CDN and the F-WTA network. An empty box 

indicates subthreshold activity at the given scale. As more scales are activated in parallel (from one to 

four scales as we move from A to D), the node in the F-WTA network receives excitation from a wider 

neighborhood (denoted by a dashed rectangle), thereby leading to a faster contour tracing. 

 

2.1.3. L-junction Detection Network 

 

Interaction between the F-WTA and the CDN helps to explain how contour tracing 

evolves within the single orientation. However, there is also a need for cross-orientation 

interactions. Tracing can switch between orientations at corners or L-junctions where the same 

contour is bent. On the other hand, tracing should not switch orientation at T- or X-junctions, 

because they occur at the intersection of two distinct contours. Furthermore, X- and T-junctions 

are particularly problematic for contour tracing because there is a danger of confusing the target 

with the distractor contour (Ullman, 1984). Therefore, the model should allow activity 

spreading across orientations at the L-junctions but not at other types of junctions. 
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Figure 6. The L-junction detection network (LDN) controls excitatory interactions between horizontal 

and vertical F-WTA networks. Lateral inhibition among the output of the same-oriented c-units 

creates an end-stopping response in the e-unit. The l-unit detects the superposition of perpendicular e-

units. Moreover, the l-unit is activated only when both of its two dendrites are active. Next, the l-unit 

multiplicatively gates recurrent collaterals connecting two F-WTA networks. In addition, the F-WTA 

networks interact with the joint inhibitory interneuron that mediates global lateral inhibition. 

  

To this end, we introduce the third component of the model, that is, the LDN (Figure 6). 

It is composed of e-units and l-units. The e-units exhibit end-stopping, that is, enhanced 

response at contour ends and corners. End-stopping is a biophysically plausible mechanism to 

create various types of junction detectors (Thielscher & Neumann, 2008). The e-units receive 

input from the same-oriented c-units. Lateral inhibition among the same-oriented receptive 

fields across neighboring positions leads to a stronger response at the line end and a weaker 

response elsewhere. Next, the l-unit detects superposition of the end-stopping activity. The l-

unit has two dendrites, each receiving input from a distinct e-unit at the same location. The 
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threshold of the l-unit is set in a way to ensure that it operates as an AND gate. It is activated 

only when it receives suprathreshold signals from both e-units. In this way, the l-unit selectively 

responds to the corner but not to a single line end. In other words, the l-unit will selectively 

respond to an L-junction but not to a T- or an X-junction. The T-junction will activate only a 

single e-unit, and the X-junction will not activate e-units at all. Finally, the output of the l-unit 

establishes the link between the horizontal and vertical F-WTA networks via the same 

multiplicative gating as that used in the CDN. The link is active only at the L-junctions, thereby 

enabling activity spreading to change direction when those junctions are encountered (Figure 

7).  

Here, we assume that the e- and l-units exist at the smallest spatial scale only, although 

this is not critical for the model’s operation. Empirical support for the corner detectors was 

provided by Anzai et al. (2007), who found evidence that some of the neurons in the V2 area 

encode a combination of orientations rather than a single orientation. Those neurons primarily 

respond to a combination of orientations that are 90º apart, consistent with their role as L-

junction or corner detectors. Finally, it should be noted that the LDN could be generalized to a 

model with many orientations. The only requirement is that the l-unit receives input from each 

e-unit on a separate dendrite. In that case, the l-unit will be sensitive to any acute or obtuse 

angle formed by two non-colinear contour segments. In such a model, there should be as many 

F-WTA networks as there are orientations. In addition, they should all exchange gated 

excitation among one another at the same location. Activity spreading may then proceed in 

directions that are consistent with the orientation of contour segments joining at the L-junction. 
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Figure 7. The differential responses of the LDN to the L-, T-, and X-junctions. End-stopping or e-units 

display an enhanced response at line ends (A). On the one hand, at the L- junction, two line ends exist, 

so both horizontal and vertical e-units are strongly activated (short black lines). On the other hand, at 

the T-junction, there is only one active e-unit. At the X-junction, there are no line ends and 

consequently no suprathreshold activity among e-units. As a consequence, the l-unit (black circle) 

shows suprathreshold activity only at the L-junction (B). Finally, the suprathreshold activation of the 

l-unit enables activity spreading in the F-WTA network to switch direction at the L-junction. This is 

not possible at the T- or X-junctions because there is no active l-unit (C). 

 

2.2. Formal Description 

 

The mathematical description of the model is provided in the next four sections. 

 

2.2.1. Feature-based Winner-Takes-All Network 

 

The dynamics of the F-WTA network is defined using differential equations. They 

specify the time-varying activity (or firing rate) of a population of excitatory nodes xijk and a 
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single inhibitory node y. The activity of the excitatory node xijk at position (i, j) and orientation 

index k obeys the following equation 

  

   1

ijk

x ijk ij ij ijk ijk ijk d ijk y

dx
x f I J g x C L T h y x T

dt
               

. (1) 

   

The activity of the inhibitory interneuron y obeys the following equation 

 

 
2

, ,

y ijk x

i j k

dy
y f h x y T

dt
 

 
      

 
 . (2) 

 

Parameters τx and τy control how quickly excitatory and inhibitory nodes respond to their 

inputs, respectively. The membrane potential of each node is transformed into an instantaneous 

firing rate by the somatic activation function f[u] defined by 

  

      max ,0f u h u u  . (3) 

 

The rectification is also used to describe the output of synaptic interactions h[u] as 

explained below. The excitatory node receives constant bottom-up input Iij and time-varying 

top-down cue Jij, which is switched off by default. This cue is temporarily switched on at the 

location where the tracing should begin. When and where the top-down cue is switched on is 

decided in a task-dependent manner by some unspecified process outside of the F-WTA 

network. Tsotsos and Kruijne (2014) described network components that can implement 

complex cognitive programs and that can serve as a source of the top-down signals. In addition 

to the bottom-up and top-down input, the soma of the excitatory node also receives input from 

its dendrite, which operates as an independent computational unit with its own activation 

function. Dendritic output g(u) is given by the piecewise-linear function of the form 
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and Td is a threshold for dendritic activation. In Equation (1), parameter α denotes the impact 

of the dendritic compartment on the soma. A dendrite receives self-recurrent collateral xi, gated 

input from the CDN denoted by Cijk, and input from the LDN denoted as Lijk. They will be 

described in Sections 2.2.2. and 2.2.3., respectively. This means that all recurrent excitatory 

connections arrive on a single dendrite. Sigmoid nonlinearity, given by Equation (4), bounds 

from above the total amount of excitation a node can receive. In this way, the dendrite prevents 

runaway excitation and allows the node to remain sensitive to input fluctuations and to 

contextual interactions arising from the local neighborhood. This is a key model property 

necessary to achieve activity spreading. 

The excitatory node also receives lateral inhibition via the inhibitory interneuron y. 

However, lateral inhibition is counteracted by retrograde signaling from the excitatory node to 

the presynaptic terminal. In Equation (1), the term – h[y – xijk – Ty] describes the interaction that 

takes place at the presynaptic terminal that delivers inhibition from interneuron y to excitatory 

node xijk. Rectification h[u] ensures that the presynaptic terminal will release its inhibitory 

transmitter only when the activity of node y exceeds the inhibitory retrograde signal from the 

postsynaptic node -xi and the threshold for presynaptic activation denoted as Ty. The strength 

of the inhibition is determined by parameter β1. A detailed biophysical justification for such 

synaptic interactions was provided in Marić and Domijan (2018). 

In a similar vein, in Equation (2), the term –h[xijk – y – Tx] describes an action of the 

retrograde signal that is released from inhibitory interneuron y on the presynaptic terminal that 

delivers excitation from node xijk. Here, parameter Tx describes the threshold for the activation 

of the presynaptic terminal of the excitatory node, and β2 determines the strength of the 

excitation. Importantly, the same inhibitory interneuron receives excitatory input from both F-

WTA networks in order to coordinate tracing across orientations. However, it is possible to 

rearrange the model so that each F-WTA network has its own inhibitory interneuron. In this 

case, it is necessary to include a separate excitatory node, which computes a maximum within 

its own network and projects its output to the inhibitory interneurons in other F-WTA networks 

(Rutishauser et al., 2012). Also, we note that inhibitory interneuron y receives only excitatory 

input from the x nodes. Still, we applied the same activation function f[u] on its total membrane 

potential in order to provide consistent descriptions of all model components.  
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2.2.2. Contour Detection Network 

 

The total output of the CDN Cijk to the F-WTA network at location (i, j) and orientation 

k is given by the sum over all four spatial scales s = {1, 2, 3, 4} corresponding to the tiny, small, 

medium, and large scale, respectively  

 

 ijk s ijks ijks

s

C a c .  (5) 

 

Parameters ωs denote scale-dependent synaptic weights controlling the impact of the CDN on 

the dendrites of the F-WTA network. The feedback projection from this network to the a-unit 

at scale s is given by 

 

 , ,

, ijks

ijks i p j q k

p q N
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 .  (6) 

 

Although the a-unit receives only excitatory input from the F-WTA network, its membrane 

potential passes through activation function f[u] for completeness. The set of indices Nijks 

describe the window over which the a-unit samples back-projected activity from the x nodes 

(Figure 4). It is defined separately for a small scale (s = 1) where 

 

   1 , : 1 1, 1 1ijkN i j i j         (7) 

 

across all orientations k. This means that the a1-unit samples the activity of the F-WTA node at 

location (i, j) and its eight nearest neighbors. Next, a set of indices for larger scales (s > 1), is 

given by 

 

   1 , : 0,ij sN i j s j s      (8) 

 

for a horizontal orientation, and by 

 

   2 , : ,0ij sN i j s i s      (9) 
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for a vertical orientation.  

The activation of the c-unit at location {i, j} is obtained by the convolution of the input 

image with a set of Gabor filters of different orientations k and scales s 

 

   ,
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   (10) 

 

where f[u] is the activation function defined by Equation (3); the set of indices -15 < p, q < 15 

defines the spatial window for convolution; Ts is a scale-dependent threshold; and 
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is an even-symmetric Gabor filter with orientation index k, aspect ratio γ, standard deviation δs, 

wavelength λs, and phase ψ. The coordinate transformation that rotates the filter to an angle θk 

is given by 

  

    ' cos sink kp p q     (12) 

 

and 

 

    ' sin cosk kq p q    ,  (13) 

 

where θk = 2πk/K,  1, 2k   and K = 2 is the total number of orientations. Each filter has three 

subregions that extend along the preferred axis: one excitatory subregion in the middle of the 

filter and two flanking inhibitory subregions.  

The dynamics of the a- and c-units in the CDN were not explicitly modeled. Instead, 

we assume that they react to their respective input in an infinitely fast manner, and we inserted 

their instantaneous equilibrium activation into the Equation describing the dynamics of the F-

WTA network. The same assumption is made for the LDN nodes to be described below. 
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2.2.3. L-junction Detection Network 

 

The cross-orientation interaction between the F-WTA networks Lijk at location (i, j) and 

orientation k is defined by 

   

 '1ijk ijk L ijL x l .  (14) 

 

In Equation (14), k’ denotes an orientation perpendicular to k, while ωL denotes the synaptic 

weight controlling the strength of cross-orientation excitation, and the l-unit activity lij is given 

by 
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 .  (15) 

 

In Equation (15), f[u] is an activation function of the l-unit defined by Equation (3), g(u) is an 

activation function of its dendrites defined by Equation (4), and TL is a threshold. Each dendrite 

receives input from the end-stopping unit of different orientation k. The activity of the end-

stopping unit eijk1 at the location (i, j), with orientation k, and at the smallest scale (s = 1) is 

given by 
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Parameter ε controls the gain of the e-unit, and TE is a threshold for its activation. The set Eij of 

locations consists of four nearest neighbors 

 

         , 1 , 1, , 1, , , 1ijE i j i j i j i j     .  (17) 

 

Equation (16) describes divisive inhibition by the same-oriented neighboring c-units. In 

the denominator, the summed input from neighboring c-units is multiplicatively gated by the 

activity of the target c-unit. In this way, the e-unit receiving weak excitation and strong lateral 

inhibition will exhibit a stronger response relative to the e-unit receiving strong excitation and 
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strong lateral inhibition. The e-unit will consequently exhibit an enhanced response at line ends 

and a weaker response further away from the line ends.  

 

2.2.4. Parameters and Simulation Method 

 

For simplicity, the thresholds that control the activation of the excitatory and inhibitory 

nodes in the F-WTA network are set to zero, and they are omitted from the model description. 

The parameter values of the F-WTA networks were set as follows: τx = 40 ms, τy = 20 ms, α = 

1, β1 = 1, β2 = 10, Td = 0.2, Tx = 0.2, and Ty = 0.2. The parameter values of the Gabor filters in 

the CDN were set as follows: γ = 0.5, λ1 = 3, λ2 = 4, λ3 = 5, λ4 = 6, δ1 = λ1/3, δ2 = λ2/3, δ3 = λ3/3, 

δ4 = λ4/3, and ψ = 0. Furthermore, the scale-dependent thresholds for the activation of the c-

units were set to: T1 = 1.5, T2 = 4, T3 = 6, and T4 = 8. The synaptic weights controlling the 

impact of the CDN on the dendrites of the F-WTA networks were set to ω1 = 1 in the simulations 

restricted to the vertical orientation (3.1., 3.3., and 3.4.) and to ω1 = 2 in all other simulations. 

All other weights were kept constant across all simulations, and they were set to ω2 = 1, ω3 = 

1, and ω4 = 1. Finally, the parameters of the LDN were set to ωL = 2, TL = 1.5, TE = 1.2, and ε 

= 10. 

The simulations were conducted by numerically integrating Equations (1) and (2) using 

Euler’s method with a time step Δt = 0.05 ms. As a verification of the numerical stability of the 

integration, simulation 3.1. was rerun with Δt = 0.01 ms, and the results were identical to the 

original simulation. To illustrate the model’s behavior, we run a set of computer simulations 

with stimuli such as those used in the empirical studies on mental contour tracing. The size of 

the input image was 30 × 30 in simulations 3.1. and 3.3.; 40 × 40 in simulations 3.2. and 3.4.; 

19 × 20 in simulation 3.5.; and 25 × 25 in simulations 3.6. and 3.7. If the location was occupied 

by the contour, then we set Iij = 1, and the background locations were set to Iij = 0. When the 

cue was applied to a location (i, j), we set Jij = 2, otherwise it was set to Jij = 0. In all simulations, 

the cue was applied in the interval t = [200 ms, 400 ms]. Each image has been scaled so that the 

maximum activity and minimum activity are mapped to black and white, respectively. 

Intermediate values map linearly onto a gray scale. 
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3. RESULTS 

 

3.1. The Effect of Distractor Proximity 

 

The basic property of contour tracing is that the time to connect starting and ending 

points on the contour increases monotonically with the distance between these points. 

Moreover, when tracing occurs along straight lines, its speed is modulated by the proximity of 

the target and distractor contours (Jolicoeur et al., 1991). As the proximity is increased, the 

tracing becomes increasingly slower, even though the distance to be traced is kept constant. To 

demonstrate that the proposed model can account for these properties, we performed a 

simulation with the input image consisting of vertical lines separated horizontally by a variable 

number of pixels.  

Figure 8 depicts four different spacings of vertical contours and the corresponding 

responses of all four scales of the c-units. Here, we illustrate the responses of the vertical c-

units only because the responses of both the horizontal c-units and the l-units are subthreshold. 

As can be seen, the output of the vertical c-units correlates with the contour spacing. When the 

horizontal separation between contours was only one pixel wide (Figure 8A), the contours were 

encoded at the tiny scale or c1-units only. The reason for this is scale-dependent flanking 

inhibition of the Gabor filters. At the small, medium, and large scales, neighboring contours 

fell within the inhibitory zone of the corresponding Gabor filters and reduced the activation of 

the c2-, c3-, and c4-units. In addition, scale-dependent thresholds Ts make these weak activations 

subthreshold.  

The exception to the inhibitory effect of neighboring contours is c-units encoding 

contours positioned at the edge of the grating. They receive weaker total inhibition and 

consequently survive thresholding even at larger scales. In other words, they receive inhibition 

only from one flank, while all other c-units receive inhibition from both flanks, thereby creating 

this edge effect. When the horizontal separation between contours was two pixels wide (Figure 

8B), contours were encoded at tiny and small scales but not at the medium and large scales. In 

this case, the c2-units are released from the flanking inhibition because neighboring contours 

are positioned farther apart relative to their inhibitory zones. Next, when the horizontal 

separation between contours was three pixels wide, the c3-units were also released from 

inhibition in addition to the c1- and c2-units (Figure 8C). Finally, when the distance between 

contours was four pixels wide (Figure 8D), the c-units at all scales were released from flanking 

inhibition. All contours were consequently encoded at all four scales. 
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Figure 8. Simulation of the effect of distractor proximity on the output of the vertical c-units at all four 

spatial scales s = {1, 2, 3, 4}. Input is a vertical grating with a one-pixel (A), two-pixel (B), three-pixel 

(C), or four-pixel (D) distance between contours.  

 

Figure 9 displays snapshots of the evolving F-WTA activity taken at five representative 

time points in response to four input configurations depicted in Figure 8. Each row depicts the 

F-WTA response to one stimulus condition: one-pixel (A), two-pixel (B), three-pixel (C) and 

four-pixel (D) wide separation between contours. We opted to display the network activity at 

five points in time that are of special interest in understanding network behavior. Those are the 

presentation of the spatial cue (t = 300 ms), removal of the cue and the start of activity spreading 

(t = 500 ms), spreading of activity enhancement along the target contour (t = 600 ms and t = 

800 ms), and the end of the simulation (t = 1500 ms).  

At the start of the simulation, all contours were selected together because they all share 

the same input amplitude (not shown). Next, the spatial cue was applied to the network at the 
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starting location for tracing. Here, we arbitrarily chose a contour in the middle of the image as 

a target for tracing. Importantly, the cue is external to the network. It is not possible to generate 

tracing automatically within the network. This is consistent with the findings of Crundall, Cole, 

et al. (2008), who demonstrated that tracing is not an obligatory process that is automatically 

activated upon the stimulus presentation. Rather, it is a strategy that could be engaged by top-

down signals depending on the current task demands. Interestingly, Crundall, Cole, et al. (2008) 

also found that when the tracing started, it could not be stopped, because they observed that 

tracing proceeds even to the contour segments that are irrelevant to the task. Moreover, 

Donovan et al. (2017) found that spatial cueing is a necessary condition to observe the effects 

of object-based attention.  

After the cue was applied, the F-WTA network began to inhibit all non-cued locations 

(Figure 9, t = 300 ms). At this moment, the F-WTA network behaved as a standard WTA 

network that selects the node with the maximal input amplitude, that is, the cued location alone. 

The activity of all other nodes fell below the QT – they were inhibited and eventually 

completely removed from the representation. If the spatial cue is constantly supplied to the 

network, then it will remain in its steady state corresponding to the WTA solution. However, 

an interesting behavior in the F-WTA network occurred after the spatial cue was withdrawn at 

t = 400 ms (not shown). Instead of returning to the initial state where all contours were selected 

together, the network gradually enhanced and selected the nodes that were connected to the 

cued location (Figure 9, t = 500 – 1500 ms). This is a consequence of the lateral excitatory 

interactions mediated by the CDN, as schematically illustrated by Figure 5. Activity supplied 

by the CDN enabled the inactive neighboring nodes of the currently active node in the F-WTA 

network to cross the QT and to take part in the pattern formation. In this way, activity 

propagated from the cued location to the end of the contour without spillover to the background.  

It might be argued that the need to withdraw the cue signal J in order to start the tracing 

process is a problematic feature of the model. However, we emphasize that J should be 

conceived as a top-down signal arriving from the frontal cortex and not as a component of the 

feedforward input I. In this way, the model is capable of distinguishing between spatial and 

object-based attention. Sometimes we need to focus on a particular location and other times on 

all locations occupied by the object. For example, when the target location is known in advance, 

there is no need to engage object-based attention. In contrast, uncertainty regarding the future 

target produces object-based effects (Shomstein & Yantis, 2002; 2004; Drummond & 

Shomstein, 2010). In other words, attention-related activity spreading is not an obligatory 

process and its engagement depends on the task demands. 
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The model achieves this distinction by applying J to the F-WTA network in a sustained 

or transient fashion. When J is sustained on a location, this location is selected alone. This 

means that spatial attention holds on to that location. On the other hand, when we solve the 

problem of whether two locations are connected, we need to focus attention on one location 

first and then move attention to the second location. In this case, spatial attention transiently 

visits the first location. We modeled this by transiently switching J on and off at a location that 

is externally designated (by the experimenter) as a starting point for tracing. After J is switched 

off, object-based attention begins to incrementally visit all locations connected with the starting 

point. 
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Figure 9. Simulation of the effect of distractor proximity on the dynamics of the vertical F-WTA 

network. Each row depicts the F-WTA response to the stimulus shown in Figure 8 with the same 

corresponding label A–D. Columns depict five representative time points. The spatial cue was applied 

between t = 200 ms and t = 400 ms. After the cue was withdrawn, at about t = 500 ms, the tracing 

started with variable speed, depending on the distractor proximity. The tracing was slow with a 

minute (one-pixel) distance (A) because activity enhancement in the F-WTA network reached the end 

of the target contour only slightly before t = 1500 ms. The speed of tracing increased with a two-pixel 

distance (B) where activity enhancement reached the end of the target contour around t = 800 ms. 

Speed of tracing increased even further with three-pixel (C) and four-pixel distances (D) where 

activity enhancement reached the end of the target contour slightly after t = 600 ms.  

 

When we compare the four stimulus conditions in Figure 9, we observe that the F-WTA 

network automatically adjusted the speed of tracing depending on the proximity of distractor 

contours. This can be appreciated by observing when enhanced activity reached the bottom end 

of the target contour in each row. When the separation between contours was only one-pixel 

wide (Figure 9A), the activity spreading was slow because the F-WTA is allowed to sample 
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signals over the a1-units or the nearest neighbors only. There was no suprathreshold activity at 

the c2-, c3-, and c4-units, and the larger integration zones offered by the a2-, a3-, and a4-units 

were disabled. Activity spreading consequently proceeded slowly by advancing one pixel at a 

time (Figure 9A). It reached the end of the target contour after t = 1000 ms but before t = 1500 

ms. Next, when the separation between contours was two pixels (Figure 9B), the speed of 

activity spreading doubled because the network advanced along the contour by taking larger 

two-pixel steps on the target contour. Now, the c2- and a2-units were activated along with the 

c1- and a1-units, and they allow for a widening of the integration zone of the F-WTA nodes. 

Consequently, the activity enhancement reached the end of the target contour at about t = 800 

ms. An even greater speed was achieved when contours were separated by a three-pixel gap 

(Figure 9C). In this condition, c3-units enabled a wider three-pixel sampling of activity in the 

F-WTA network. As a result, activity enhancement reached the end of the target contour slightly 

after t = 600 ms. Finally, when the separation between contours was four pixels wide (Figure 

9D), the speed of activity spreading was also very high because the F-WTA network received 

input from the a4-units as a result of the suprathreshold activity of the c4-units. In this condition, 

the network also reached the end of the target contour slightly after t = 600 ms.  

 Figure 9 reveals another important property of the F-WTA network. As tracing 

proceeded to the end of the contour, new nodes were recruited and appended to the existing 

representation of the contour. At the same time, old nodes that were already activated at the 

earlier stages of tracing remained active to the end of tracing. In this way, the model implements 

object-based attention that spreads along the whole object, consistent with behavioral findings 

suggesting that tracing spreads rather than moves along the contour (Houtkamp et al., 2003; 

Roelfsema et al., 2010; Scholte et al., 2001). Importantly, adding new nodes to the 

representation of the target curve does not reduce the activity of already activated nodes as 

would be expected in the WTA network with unconstrained lateral inhibition. This does not 

take place in the F-WTA network, because of the retrograde signaling, which prevents lateral 

inhibition among winning nodes irrespective of their total number.  

Figure 10 further illustrates the temporal dynamics of the activity of individual nodes in 

the F-WTA network. Here, we depict the activation of the cued node and the nodes positioned 

on the target contour that are four, eight, 12, and 16 pixels away from the cued node. Figures 

10A–D illustrate the same dynamics as Figures 9A–D, respectively. Again, the same features 

of the F-WTA dynamics are clearly visible. When the cue was on, the cued location was the 

only winner. After the cue was removed, the tracing proceeded by the sequential excitation of 

connected nodes. Each excitatory node attained the same activity level because of the dendritic 
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saturation, which prevented unbounded activity growth. Moreover, presynaptic inhibition 

mediated by the retrograde signaling prevented lateral inhibition among the winning nodes. 

Therefore, their activation does not deteriorate as new nodes were recruited into the 

representation of the same contour. Finally, the speed of tracing depended on the output of the 

c-units. It was slowest when the input to the F-WTA nodes arrives from the c1-units only (Figure 

10A). The tracing speed became increasingly faster when the c2- and c3-units were also 

suprathreshold (Figure 10B and 10C), and it was fastest when all four scales of the CDN were 

simultaneously active (Figure 10D).  

 

 

Figure 10. The temporal dynamics of the activity of the vertical F-WTA nodes lying on the target 

contour with a target-distractor distance of one pixel (A), two pixels (B), three pixels (C), or four 

pixels (D). Nodes are labeled by their distances (in pixels) from the cued location.  

 

To summarize the dynamics of the F-WTA network and to facilitate a comparison with 

the behavioral data, we calculated the time from the application of the spatial cue to the 

activation of the set of nodes along the target contour. Also, we added a constant 200 ms to all 

conditions to take into account processes not related to tracing (e.g., decision making and 
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response preparation). These processes occur after the contour tracing is completed. However, 

to make Figures 10A–D consistent with this calculation, we inserted the same 200-ms temporal 

interval between the start of the simulation and the presentation of the cue. In this way, Figures 

10A–D depict the total time needed to make response. 

Figure 11A displays the time (in milliseconds) that the enhanced activity in the F-WTA 

network needs to reach the chosen location along the target contour as a function of the distance 

(in pixels) from the cued location and the proximity between the target and distractor contours. 

For comparison purposes, Figure 11B displays empirical data from Experiment 3 of Jolicoeur 

et al. (1991). Two empirically observed trends are also clearly visible in the simulation. The 

tracing time increases monotonically with the distance from the cue to the target location. 

Moreover, the slope of the tracing time curve increases as a function of increased proximity 

between the target and distractors. Interestingly, no appreciable difference exists between 

tracing times in conditions C and D corresponding to larger target-distractor separation (Figure 

11A). The reason is that we employed relatively small input patterns, and the effects of tracing 

may not become evident until there is a relatively greater distance between the targets along the 

contour. A similar pattern is also observed in the empirical data (Figure 11B). 

 

 

Figure 11. Comparison between the results of simulation and behavioral data. Simulated tracing 

times are plotted as a function of distance from the spatial cue (A). A linear trend is observed with a 

varying slope for different target-distractor distances. To compare the simulation with empirical data, 

in (B), we redraw mean tracing times for the same response observed in Experiment 3 of Jolicoeur et 

al. (1991). In their data, distance is measured in degrees of visual angle. 
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3.2. The Effect of Contour Curvature 

 

Jolicoeur et al. (1991) also found that at a fixed distractor proximity, tracing becomes 

increasingly slower as the curvature of the contour increases. With low-resolution input images 

used here, we emulated the contour curvature by small horizontal displacements of the segments 

of the vertical contour. Therefore, the contour curvature was defined as the number of horizontal 

displacements within the same contour size. Figure 12 illustrates four different contour 

curvatures (including the straight contour) and the corresponding output of the c-units in the 

CDN. In a stimulus with high-curvature contours (Figure 12A), contour segments were 

displaced horizontally four times to the right and then four times to the left (if we traverse 

through the grating from top to bottom). Displacements were always by one pixel. Such 

displacements produce short contour segments that can activate only c1-units. On the other 

hand, the c2-, c3-, and c4-units were inactive because of the scale-dependent thresholding. With 

the medium-curvature contours (Figure 12B), the number of displacements was decreased. 

There were three displacements to the right and three to the left. This manipulation creates 

longer contour segments that can activate c2-units along with the c1-units. In the stimulus with 

low-curvature contours (Figure 12C), there was only one displacement to the right and one to 

the left. Such displacements leave the contour segments large enough to activate c3-units along 

with the c1- and c2-units. Finally, an input image consisting of straight contours activates all 

four scales of the CDN (Figure 12D). 
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Figure 12. Simulation of the effect of contour curvature on the output of the vertical c-units at all 

spatial scales s = {1, 2, 3, 4}. Input is a vertical grating with large (A), medium (B), and small (C) 

contour curvatures or a straight line (D).  

 

Figure 13 displays snapshots of the F-WTA activity taken at five representative time 

points in response to four input configurations illustrated in Figure 12. Each row in Figure 13 

depicts the F-WTA response to one stimulus condition: high-curvature (A), medium-curvature 

(B), and low-curvature contour (C), and the straight line (D). As in the previous simulation, the 

contour in the middle of the image was chosen for tracing. The spatial cue was applied to the 

top of the contour placed in the middle of the input pattern. The cue enabled the network to 

behave similarly to a standard WTA network and to select only the cued location (t = 300 ms, 

across all rows). However, after the cue was removed, tracing began by selectively amplifying 

the activity of neighboring units that also received feedforward input (t = 500 ms, across all 

rows).  



 

164 

 

Importantly, the speed of tracing was modulated by the response of the c-units in the 

same way as in the previous simulation. This is seen in Figure 13 by inspecting each row from 

left to right and by noting when the spreading of enhanced activity reached the lower end of the 

target contour. In the high-curvature condition (Figure 13A), only a1-units contributed to the 

activity spreading because only the c1-units generated the suprathreshold activity in the CDN. 

As a result, enhanced activity reached the end of the target contour after t = 1000 ms and before 

t = 1500 ms. In the medium-curvature condition (Figure 13B), activity enhancement was faster 

because it advanced by two pixel steps along the contour provided by the activation of the c2-

units. In this case, the end of the target contour was reached slightly after t = 1000 ms. In the 

low-curvature condition (Figure 13C), activity enhancement proceeded even faster, that is, by 

three pixel steps. Here, the c3-units further increased the step size by which activity spreading 

advanced along the contour, thereby leading to an even shorter time to reach the end of the 

target contour between t = 800 ms and t = 1000 ms. Finally, with straight contours (Figure 13D), 

c4-units were also activated. In this case, activity spreading was fastest and reached the end of 

the target contour at around t = 800 ms.  
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Figure 13. Simulation of the effect of contour curvature on the dynamics of the vertical F-WTA 

network. Each row depicts the F-WTA response to the stimulus shown in Figure 12 with the same 

corresponding label A–D. Columns depict five representative time points. The spatial cue was applied 

between t = 200 ms and t = 400 ms. After the cue was withdrawn, at about t = 500 ms, the tracing 

started with variable speed, depending on the contour curvature. Looking from left to right in each 

row, it is clear that activity enhancement moved slowly on the target contour with large curvature (A) 

where it reached the end of the contour just before t = 1500 ms. Activity enhancement became 

increasingly faster with medium (B) and small curvatures (C), where it reached the end of the target 

contour between t = 800 and t = 1000 ms. Activity enhancement was fastest on the straight line (D) 

where it reached the end of the target contour before t = 800 ms.  

 

Figure 14 illustrates the temporal dynamics of the activity of individual nodes in the F-

WTA network in the same manner as Figure 10 in Section 3.1. In particular, Figure 14 displays 

the activation of the cued node and the nodes positioned on the target contour that are 8, 16, 
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and 24 pixels away from the cued node. Labels A, B, C, and D correspond to the high-curvature, 

medium-curvature, low-curvature, and straight contour condition, respectively. 

 

 

Figure 14. The temporal dynamics of the activity of the vertical F-WTA nodes lying on the target 

contour with large (A), medium (B), and small (C) contour curvatures, and the straight line (D). 

Nodes are labeled by their Hamming distance (in pixels) from the cued location.  

  

To summarize the results of the simulation, we computed tracing times for selected 

distances from the cue in the same way as in the previous simulation. Figure 15A demonstrates 

that contour curvature modulates the slope of the tracing time curves when they are drawn as a 

function of the cue-target distance. With higher contour curvature, contour tracing becomes 

increasingly slower. This is consistent with the behavioral data observed in Experiment 1 of 

Jolicoeur et al. (1991); that data is redrawn in Figure 15B for comparison. Importantly, the 

spacing between contours is kept constant, and it cannot contribute to this effect. 
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Figure 15. Comparison between the results of simulation and behavioral data. The simulated tracing 

times are plotted as a function of distance from the spatial cue (A). The approximately linear trend is 

observed with a varying slope for different levels of curvature. To compare the simulation with 

empirical data, in (B), we redraw mean tracing times for the same response observed in Experiment 1 

of Jolicoeur et al. (1991). In their data, distance is measured in degrees of visual angle. 

 

It is interesting to note that the speed of tracing was generally slower in the current 

simulation relative to the previous one when the same parameter set was used. The reason for 

this slowing down is the fact that c-units are not maximally activated by the curved contours. 

In other words, segments of the curved contour are not perfectly aligned with the excitatory 

part of the Gabor filter. Therefore, the F-WTA nodes received smaller total activation from the 

c-units, leading to a slower tracing speed. On the other hand, the data of Jolicoeur et al. (1991) 

reveals comparable tracing times along curved and straight contours. To account for this 

discrepancy, we set the synaptic weight of the smallest scale ω1 to a higher value in the current 

simulation relative to the previous one. The justification for this modification is the fact that 

curved contours would likely activate several similar orientations within the more realistic 

version of the CDN with multiple orientations. Another possibility is that there exist dedicated 

curve or angular detectors, as proposed by Craft et al. (2007; see also Zhang & von der Heydt, 

2010), whose activation may boost the speed of tracing along curved contours by providing an 

additional source of activation to the F-WTA network. These considerations led to the choice 

of ω1 = 1 in simulations involving straight vertical contours (simulations 3.1., 3.3., and 3.4.) 

and ω1 = 2 in all simulations involving curved contours (simulations 3.2., 3.5., 3.6., 3.7., and 

3.8.). 

In simulations 3.1. and 3.2., the spatial cue was always positioned at the beginning of 

the contour. This does not have to be the case. For example, it is possible that the spatial cue is 
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applied in the middle of the contour or at any other location along the contour. In a similar vein, 

Crundall, Cole, et al. (2008) suggested that observers sometimes skip the tracing over an 

irrelevant part of the contour. In other words, they move their spatial attention along the contour 

and engage it at the location that is closer to the end of the contour. In this way, the tracing is 

substantially speeded up. The F-WTA network can support such a strategy because it can be 

cued anywhere on the target contour. After the withdrawal of the cue, the network will start to 

spread enhanced activity along the cued contour in both directions, namely up and down (for 

vertical contours) or left and right (for horizontal contours).  

 

3.3. The Effect of Object-based Attentional Cueing 

 

The neural network for attentional selection should be sensitive to abrupt changes in the 

input because they might be informative and beneficial in solving cognitive tasks, such as 

examining whether two dots lie on the same contour. McCormick and Jolicoeur (1992) 

investigated the relationship between attentional cueing and mental contour tracing. They 

employed grating stimuli similar to those used in the Jolicoeur et al. (1991) study and illustrated 

in Figure 2A. Object-based cueing involves a temporary brightening of one of the contours in 

a grating. Importantly, the cue disappears before the dots, whose connectedness should be 

established, appear on the grating. In particular, the cue remained on the screen for 50 ms, 

followed by a 67-ms interval of presentation of the original grating without the cue. After the 

interstimulus interval, the dots appeared on the contour for another 150 ms.  

McCormick and Jolicoeur (1992) found that an object-based cue substantially reduces 

the speed of tracing. In fact, the tracing times to reach different contour segments were almost 

a flat function of the distance from the start of the contour. Such results suggest that tracing was 

not necessary and that all segments of the cued contour were selected together in one processing 

step. Furthermore, it implies that attention remained on the cued contour even after cue 

disappearance, possibly because of the involvement of spatial working memory. 

The simulation presented in parallel in Figures 16 and 17 illustrates that the F-WTA 

network can handle object-based cueing. Figure 16 displays the activation of the vertical F-

WTA network in response to the object-based cue. Another perspective on the same network 

dynamics is depicted by Figure 17, which reveals the temporal evolution of the activity of a 

single node at the target and at the distractor contour. In both figures, the same letter denotes 

the same stimulus condition. Figures 16A and 17A indicate that when the input amplitude of 

all locations occupied by the target contour is temporarily increased from Iij = 1 to Iij = 3, for 
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the interval of 200 ms, the network selected a cued contour as the winner. In contrast to other 

WTA networks, which select only a single location (Itti & Koch, 2001), the F-WTA selects all 

cued locations together. Importantly, after the cue was withdrawn, the cued contour remained 

selected, illustrating the network’s ability to hold the target representation active even after the 

cue disappeared. In this way, the network is capable of integrating signals that appear on the 

same location at different times. Further examples of this behavior are presented in Marić and 

Domijan (2018). 

 

 

Figure 16. Simulation of the effect of object-based spatial cueing on contour tracing (McCormick & 

Jolicoeur, 1992). When the cue duration is 200 ms, the F-WTA network successfully selects the cued 

contour and stored it into working memory (A). If the cue is presented too quickly (50 ms), the F-WTA 

network fails to segregate the target contour from the distractors and returns to the state where all 

contours are selected together (B). However, when the cue strength increases, the F-WTA network is 

again capable of segregating the target form distractors even under a short (50 ms) cue duration (C). 

  

We also examined temporal constraints on object-based cueing because McCormick 

and Jolicoeur (1992) used a much shorter cue duration. Figures 16B and 17B illustrate what 

occurred when the cue was presented for only 50 ms. In this case, the F-WTA network failed 

to segregate the target from distractors, and it returned to the initial state where all contours are 
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selected together. The reason was that the activity of the inhibitory interneuron tracked the 

activity of excitatory nodes with a maximal input magnitude and consequently lagged behind 

them. When the inhibitory interneuron failed to reach an activity level that is sufficiently above 

the activity of the excitatory nodes encoding distractor contours, there was no segregation 

between the target and distractors. One way in which to circumvent this limitation is to apply a 

much stronger input increment (Figure 16C and 17C). Here, we increased the input amplitude 

from Iij = 1 to Iij = 7 for 50 ms on all locations occupied by the target contour. In this case, the 

network regained its ability to segregate the target from distractors. This additional strength in 

the input to the F-WTA network may arise from a transient channel that selectively responds to 

sudden changes in input amplitude (Kulikowski & Tolhurst, 1973; Legge, 1978). 

 

 

Figure 17. Another view of the simulation of object-based spatial cueing. Here, the input (top row) 

and the activity of the F-WTA network (bottom row) at one target and one distractor location are 

depicted as a function of time. In (A), the F-WTA network successfully segregated the target from the 

distractor but failed to do so in (B) because of the short presentation of the cue. When the strength of 

the cue is increased, the F-WTA can segregate the target from the distractor even with a short cue 

duration (C). 
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3.4. Tracing Across Gaps 

 

Ullman (1984) noted that gaps on the contour may disrupt tracing. They may arise from 

noise in the process of image registration that interferes with the cognitive computations. To 

illustrate how the F-WTA network handles gaps on the contour, we ran a simulation with the 

stimuli similar to those used in Section 3.1., but with two small gaps on all contours. The first 

gap is only one pixel wide, and it was placed on the contours near the starting point of tracing. 

The second gap is two pixels wide, and it was placed farther away from the cued location on 

the contours. The dynamics of the F-WTA network is presented in Figure 18.  

When the contours were closely spaced (Figure 18A), the F-WTA network got stuck at 

the first gap. Here, the excitatory lateral interactions were driven by the a1-units only, since 

only the c1-units generated suprathreshold activity. The a1-units do not have a sufficient lateral 

extent to cross even the smallest gap. When the contour spacing was slightly larger (Figure 

18B), activity spreading can cross the first gap; however, it got stuck at the second gap. In this 

condition, a1- and a2-units were both activated as a result of the activation of their c-unit 

counterparts. The a2-units have a sufficient lateral extent to cross the first gap but not the 

second. Finally, when the spacing between contours was wide enough to activate c3-units also, 

the corresponding a3-units helped the activity spreading in the F-WTA network to cross both 

gaps and to reach the end of the contour (Figure 18C). To cross even larger gaps, the F-WTA 

network would require the recruitment of the c4-units or even larger spatial scales (Houtkamp 

& Roelfsema, 2010; Ullman, 1984). Alternatively, it is possible to enhance the model of the c-

units with mechanisms for long-range collinear contour detection (Ursino & La Cara, 2004) or 

with mechanisms for the perception of illusory contours such as the cooperative-competitive 

loop, which is capable of completing large gaps between collinear contour segments (Gove et 

al., 1995). 
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Figure 18. Simulation of contour tracing across small gaps. The stimuli were similar to those used in 

the simulation presented in Figure 8. When contours are closely spaced, the activity enhancement in 

the F-WTA network cannot cross the small gap near the start of the tracing (A). With larger spacing 

among contours, the activity enhancement can cross the small gap; however, it gets stuck at larger 

gaps positioned farther along the contour (B). If the spacing between contours is increased even 

further, then the activity enhancement in the F-WTA network can cross both gaps and complete the 

spatial representation of the target contour. 

 

3.5. Solving the Spiral Problem 

 

In previous simulations, we used simple grating stimuli that required vertical boundary 

detectors only. To demonstrate that the proposed network can also trace more complex patterns 

composed of vertical and horizontal contour segments, we employed the famous spiral problem 

(Minsky & Papert, 1988). It was designed to examine the pattern separation capabilities of 

perceptrons and related learning algorithms. Importantly, the spiral problem has also inspired 

much of the research on mental contour tracing. Like perceptrons, human observers cannot 

immediately perceive whether there are two spirals that can be separated or whether there is a 

single connected spiral. To solve this task, we need to focus on one part of the spiral and spread 

attention to all connected elements. 
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Figure 19. Simulation of the solution to the spiral problem when the input is a one-spiral image. In 

(A), the outputs of all four scales of the CDN are presented alongside with the output of the LDN. In 

(B), snapshots of the F-WTA network activity were taken at five representative time points. 

  

Figures 19 and 20 illustrate how the F-WTA network solves the spiral problem. The 

input pattern is one (Figure 19, INPUT) or two spirals (Figure 20, INPUT). To simplify the 

presentation of the output of the c-units and the nodes of the F-WTA network (Figures 19B and 

20B), here and in the simulations presented in the next two sections, we used the following 

convention. We computed the maximum of the outputs of the vertical and horizontal c-units at 

each pixel and displayed it in the image. The same convention was applied in displaying the 

output of the horizontal and vertical F-WTA networks at selected time steps in Figures 19C and 

20C. Also, we included the response of the l-units (LDN in Figures 19B and 20B), as their 

output is important in tracing across L-junctions.  

The simulation followed the same scenario as described in Section 3.1. This means that 

the external spatial cue was applied and then withdrawn. The cue was applied at the top right 

pixel of the contour, although this is not crucial. After the removal of the cue, the F-WTA 

network began to trace the contour, as already demonstrated before (Figures 19C and 20C). In 

Figure 19C, activity enhancement progressively spread along the cued contour from t = 500 ms 

across t = 1000 ms and t = 2000 ms until it reached the end of the contour shortly before t = 
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4000 ms. In this case, the steady state activity of the F-WTA network suggests the presence of 

a single connected spiral.  

In Figure 20C, activity enhancement progressed in a similar fashion. However, it 

reached the end of the cued contour before t = 2000 ms because this contour was much shorter 

relative to the contour used in Figure 19. In Figure 20C, the cued contour was clearly segregated 

from the distractor at t = 2000 ms and afterwards. In this way, the steady state activity of the F-

WTA network suggests the presence of two separated spirals.  

Importantly, at the corners of spirals, activity spreading turned from the horizontal to 

the vertical segment, and vice versa. This was a consequence of the activation of the l-units 

(LDN in Figures 19B and 20B), The l-units established the excitatory link between two F-WTA 

networks and enable enhanced activity to jump from one F-WTA network to another. However, 

such integration of signals from both orientations creates a potential problem when the network 

traces patterns with X- or T-junctions. This will be addressed in the next two sections.  

 

 

Figure 20. Simulation of the solution to the spiral problem when the input is a two-spiral image. In 

(A), the outputs of all four scales of the CDN are presented alongside with the output of the LDN. In 

(B), snapshots of the F-WTA network activity were taken at five representative time points. 

 

 



 

175 

 

3.6. Tracing Across X-junctions 

 

Many contour tracing studies employed intersecting contours as stimuli (e.g., Crundall, 

Cole, et al., 2008; Houtkamp et al., 2003; Scholte et al., 2001). Contour intersections create so-

called X-junctions that are especially problematic for contour tracing (Ullman, 1984). When 

the tracing operator approaches an X-junction from one of the four directions, the direction in 

which to proceed from the junction onwards is not clear. If there are no orientation-specific 

mechanisms that constrain tracing, then the tracing would spill over in all directions, leading to 

a tracing error. Human observers tend to choose the direction that requires the smallest change 

in orientation. In other words, the tracing will continue in the direction that is collinear to the 

direction from which it arrives at the X-junction. This is closely related to the well-known 

Gestalt principle of good continuation (Brooks, 2014). To account for this property, we 

designed the l-unit in a way to respond exclusively to L-junction but not to X-junction although 

X-junction actually consists of four adjacent L-junctions. However, at the X-junction, there is 

no end-stopping responses and consequently no l-unit activity. As a result, activity in the F-

WTA networks continues to propagate in the segregated orientation domains (horizontal or 

vertical). 

Figure 21 demonstrates that the F-WTA networks spread activity enhancement across 

X-junctions according to the Gestalt principle of good continuation. As input to the network, 

we used two intersecting squares (Figure 21, INPUT). Figure 21A depicts the responses of CDN 

and LDN to this input pattern. First, we applied the cue on the upper left square (Figure 21B) 

using the same cueing procedure as in the previous simulations. After the cue was applied to 

both horizontal and vertical F-WTA networks, they gradually inhibited all non-cued locations 

(Figure 21B, t = 300 ms) and eventually selected the cued location alone. After the cue was 

removed at t = 400 ms (not shown), activity in the horizontal F-WTA network began to spread 

to the left and right from the cued location (Figure 21B, t = 500 ms). The vertical F-WTA could 

not exhibit activity spreading at the cued location, as it did not receive input from the vertical 

c-units. However, enhanced activity in the horizontal F-WTA network crossed the L-junctions 

at the corners of the square and activated the vertical F-WTA network, which continued to 

propagate enhancement in the vertical direction (Figure 21B, t = 600 ms). Next, activity 

enhancement passed through the upper right X-junction from above (Figure 21B, t = 700 ms). 

At the X-junction, there was no activity spillover to the horizontal F-WTA because the l-unit 

was not active here (Figure 21A, LDN). At about t = 800 ms (not shown), the horizontal F-

WTA reached another X-junction located in the lower left part of the image and crossed it 
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without spillover. Again, the reason is the absence of the output from the l-units. At the end of 

simulation, both networks reached a steady state with the active representation of the cued 

square (Figure 21B, t = 1000 ms). In the same manner, when the lower right square was cued 

(Figure 21C, t = 300 ms), activity spreading in the F-WTA networks led to the segregation of 

the cued square from the background without making an error (Figure 21C, t = 1000 ms). 

 

 

Figure 21. Simulation of the contour tracing across X-junctions. The input consists of two intersecting 

squares (INPUT). In (A), the outputs of all four scales of the CDN are presented alongside with the 

output of the LDN. In (B) and (C), snapshots of the F-WTA network activity were taken at five 

representative time points. In (B), the spatial cue was applied to the upper square. In (C), the cue was 

applied to the lower square. 
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3.7. Tracing Across T-junctions 

 

Here, we demonstrate that the same effect observed in the previous simulation also 

occurs at the T-junctions (Figure 22). On the one hand, The T-junctions perceptually signal the 

presence of an occlusion in depth. In particular, the top of the T is perceived as a part of the 

object that is closer in depth and that occludes parts of other objects in its immediate 

neighborhood. On the other hand, the stem of the T belongs to the occluded object (Figure 22, 

INPUT). The T-junctions are also problematic with respect to tracing because it would be 

erroneous to join the top and stem of the T-junction together into the representation of the same 

contour. Here, we demonstrated that the F-WTA networks correctly separate the representation 

of the occluding or the occluded object depending on the location where the cue is applied. 

Figure 22A depicts the responses of CDN and LDN to the input pattern.  

When the occluding object was cued (Figure 22B), tracing proceeded along its contour 

without spillover to the contour of the occluded object at the T-junction. In the same manner, 

when the occluded object was cued (Figure 22C), tracing proceeded along its contour without 

spillover to the contour of the occluding object. At the T-junction, there was no suprathreshold 

activity in the LDN and consequently no interaction between the vertical and horizontal F-WTA 

networks. On the other hand, at the L-junctions, activity spreading crossed between the vertical 

and horizontal F-WTA networks via a link established by the suprathreshold l-units (Figure 

22A, LDN). It should be pointed out that the F-WTA network does not have the capacity to 

represent different depth planes for occluding and occluded objects. Still, it properly detaches 

them during tracing. 

 



 

178 

 

 

Figure 22. Simulation of contour tracing across T-junctions. Input consists of two overlapping 

squares, where one square occludes the other (INPUT). In (A), the outputs of all four scales of the 

CDN are presented alongside with the output of the LDN. In (B) and (C), snapshots of the F-WTA 

network activity were taken at five representative time points. In (B), the spatial cue was applied to the 

occluding square. In (C), the cue was applied to the occluded contour.  

 

3.8. The Effect of Changes in Parameters 

 

It is important to establish the degree to which the model behavior is affected by changes 

in the model parameters. To this end, we rerun simulation 3.1. with different parameter settings 

to examine whether contour tracing could still be observed. Three key parameters are the 

strength of the dendritic impact on node α, the strength of lateral inhibition β1, and the strength 

of the recurrent excitation arriving on inhibitory interneuron β2. First, we examined systematic 

changes in one parameter while other parameters were kept fixed at default values.  
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Parameter α could be set anywhere in the range between 0.5 and 1.5 without affecting 

the network’s ability to perform tracing. In the same manner, weights controlling multiplicative 

gating from the CDN (ω1, ω2, ω3, ω4) to the F-WTA network could be set anywhere between 

0.2 and 2.0. The weight controlling multiplicative gating from the LDN (ωL) to the F-WTA 

network could be set in the range between 1.0 and 4.0. These weights affected the speed of 

tracing only with higher values, leading to faster tracing. The effect of changes on parameter β1 

was more destructive. Contour tracing was observed when it was set in the range between 0.9 

and 1.3. When β1 < 0.9, the network settled to a steady state with indiscriminate selection of all 

nodes that received input. In other words, lateral inhibition was too week and it could not 

suppress distractors. When β1 > 1.3, the network selected the cued location only. In this case, 

lateral inhibition was too strong, and consequently tracing could not start at all. Parameter β2 

was set at the lower bound to achieve contour tracing, and any value above the default value of 

10 led to the same behavior.  

Second, we examined joint variations of parameters α and β1. When β1 was set at its 

lower bound of 0.9, α should be in the range between 0.6 and 1.0. When β1 was in the range 

between 1.0 and 1.3, α should be set in the range between 0.5 and 1.0. When β1 was set in the 

range between 0.9 and 1.3, and if α was set below its prescribed range, the network selected all 

nodes that received input. On the other hand, if α was set above its prescribed range, the network 

selected the cued location only. Also, it should be pointed out that thresholds for dendritic and 

synaptic computation, Td, Tx, and Ty could be jointly increased or decreased by 50% of their 

default values without any impact on the observed results. This analysis suggests that the 

proposed model is quite robust in terms of parameter changes and that it can operate in realistic 

physiological conditions.  

 

 

4. DISCUSSION 

 

To account for behavioral findings on contour tracing, McCormick and Jolicoeur (1991, 

1994) developed a zoom lens model that captures many of its features. They have identified 

five component processes that a contour tracing operator should have: (1) a process that can 

determine whether there is only one contour within the receptive field, (2) a zoom process that 

can shrink or expand the size of the receptive field until an optimal size is reached such that 

only one contour remains within it, (3) a process to determine whether the second contour 

segment has been located, (4) a process that calculates the direction of the next attentional shift, 
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and (5) a process that shifts the receptive field to a new region that contains a small part of the 

previously selected contour segment. Although successful in explaining patterns of response 

times, the zoom lens model is purely descriptive. It does not provide details about the possible 

neurocomputational mechanisms that can support the identified processes. In this regard, we 

illustrated how interactions between the F-WTA network with two components of the boundary 

processing, such as CDN and LDN, achieve contour tracing.  

The c-units detect contour segments of different sizes via multi-scale Gabor filtering. 

Filters were designed so that the width of their inhibitory part scales with the size of the 

excitatory part in the preferred direction. Suprathreshold activation of the c-units consequently 

signals that no distractors are present within their respective inhibitory zone. Therefore, the c-

units implement the process (1). Next, the multiplication between the a- and c-units gates lateral 

interactions within the F-WTA network, as illustrated in Figure 5. Therefore, the F-WTA 

network will make larger or smaller steps along the target contour depending on the activation 

of the c-units of the corresponding size. In this way, multiplicative gating implements process 

(2), that is, zooming in or zooming out.  

Processes from (3) to (5) are intrinsic to the F-WTA network. It automatically finds a 

path to spread activity along the contour without spillover to empty space around the contour. 

The reason is that an empty location does not receive sufficient input to cross the QT and to 

become a part of the representation of the target contour. In contrast, a location occupied by the 

contour will cross the QT because it receives two independent sources of activation: 

feedforward input and dendritic output mediating lateral excitation. In other words, its total 

somatic activation is the same as that of the already activated nodes (see the Appendix for 

details). In consequence, such a node is incrementally added to the already established 

representation of the target contour. This process continues until it reaches an empty space. 

Formally speaking, the network traverses, in its state-space, through a series of forbidden 

(unstable) subspaces until it reaches a permitted (stable) subspace corresponding to the solution 

of the problem of connectedness detection (Rutishauser et al., 2015). In addition to the five 

processes described above, the LDN helps to regulate activity spreading along the L-, X-, and 

T-junctions, and it prevents spillover to the distractor contour. 

 The F-WTA network shares a similarity with the filling-in model of perception 

developed to account for the formation of a surface representation in brightness perception 

(Grossberg & Todorović, 1988). It was later extended to simulate the detection of 

connectedness (Grossberg & Wyse, 1991, 1992) and both figure-ground separation and depth 

perception (Grossberg, 1994). The basic assumption of the filling-in model is that the neural 
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substrate of surface perception is the diffusion of electrical activity among nearest neighbor 

nodes. Diffusion allows brightness or color signals registered at surface borders to fill in the 

interior of a surface. However, diffusion is blocked at surface borders because of the separate 

boundary signals that prevent activity spillover across surfaces.  

Two features of the filling-in model are relevant here. First, it is a pixel-by-pixel process 

that slowly spreads activity enhancement, and it consequently cannot exhibit a variable speed 

of tracing (Jolicoeur et al., 1991). The exception to this is a model of non-diffusive filling-in 

proposed by Francis and colleagues (Francis & Ericson, 2004; Francis & Rothmayer, 2003) 

where lateral interactions extend far in space. However, non-diffusive filling-in does not have 

the ability to propagate signal enhancement among distant network locations that are outside of 

the model’s receptive fields. Second, both diffusive and non-diffusive models of filling-in have 

no ability to sustain activity over the target object after input vanishes, because they lack self-

recurrent connections. Therefore, they cannot support object-based cueing, as demonstrated by 

McCormick and Jolicoeur (1992).  

The F-WTA network solves these problems by incorporating multiplicative gating of 

the excitatory interactions and self-recurrent collaterals. Importantly, despite its recurrent 

connectivity, the F-WTA network remains sensitive to new inputs because feedforward signals 

arrive on a node’s soma, while recurrent interactions between nodes are confined to the 

dendrite. An additional computational step afforded by the sigmoid nonlinearity in dendrites 

prevents saturation of the node’s activity as it would typically occur in the recurrent excitatory 

network (Francis et al., 1994). As a consequence, the F-WTA network makes a smooth 

transition from old to new input. It is even sensitive to the abrupt onset of a new object in the 

existing input pattern (Marić & Domijan, 2018).  

Finally, it should be noted that the F-WTA performs attentional filling-in over contour 

signals themselves rather than on the empty space enclosed by the contours as it occurs in the 

filling-in models. Raudies and Neumann (2010) developed a model of figure-ground 

segregation and object-based attentional selection whereby enhanced neural activity spreads 

within the interior of object’s surface. In the model, attention-related activity enhancement 

arises from modulating feedback signals arriving from a working memory circuit. Feedback 

signals traverse through a cortical hierarchy from V4 to V1. In addition, feedback signals spread 

laterally within each cortical area to encompass the complete surface. Raudies and Neumann 

(2010) tested the proposed model on various stimulus configurations and made testable 

predictions regarding the timing of neural responses in model’s cortical areas. However, they 

did not test the effect of target-distractor proximity or target curvature on the speed of tracing, 
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so it is not clear whether their model can handle datasets studied here. Further work is also 

needed to explore the possibility of adapting the model proposed here to perform attentional 

filling-in over surfaces instead of contours. 

An important limitation of the F-WTA network is that its pattern separation capability 

is too strong because the distractor contour was suppressed to zero, while the target contour 

remained active at the level, as it was presented alone. Nevertheless, neurophysiological data 

suggests only modest modulation; that is, the activity difference between neurons encoding 

target and distractor contours is small relative to their maximal response (Roelfsema et al., 

2003, 1998). However, it should be noted that Roelfsema et al. tested only neurons in V1. On 

the one hand, there is evidence that the attentional modulation of firing rates is stronger and 

starts earlier in cortical areas positioned higher in a visual hierarchy such as V4 or 

inferotemporal cortex (Buffalo et al., 2010; Maunsell & Cook, 2002). Still, neurons in the 

ventral visual stream respond in a graded fashion, and no evidence was found for all-or-none 

responses required for WTA selection. On the other hand, the posterior parietal cortex (PPC) is 

involved in the WTA computation (Bogler et al., 2011). The PPC neurons combine feature 

(orientation) selectivity with spatial attention (Levichkina et al., 2017; Ogawa & Komatsu, 

2009) in order to compute a feature-specific priority map (Veale et al., 2017). Therefore, the 

PPC may contain a representation of the target contour similar to the output of the F-WTA 

network.  

Another possibility is that the F-WTA network is located in the pulvinar nucleus of the 

thalamus. The pulvinar is reciprocally connected with the visual areas of the ventral stream, and 

its deactivation led to a reduction of attentional effects in them (Zhou et al., 2016). Furthermore, 

the pulvinar is involved in the filtering of distractors because attended objects are encoded with 

high precision, while there is no measurable encoding of ignored objects (Fischer & Whitney, 

2012). Irrespective of its exact anatomical location, we emphasize that the F-WTA network is 

a part of the attentional network dedicated to target selection and distractor filtering. Such a 

network may operate in parallel to, and independent of, the network dedicated to visual 

perception, as indicated by the distinction between A- and N-neurons observed by Roelfsema 

et al. (2010; see also Beck & Schneider, 2017).  

Grossberg and Raizada (2000) and Raizada and Grossberg (2001) demonstrated how 

response modulation among collinear contour segments arises in a biologically realistic laminar 

model of perceptual grouping. In their model, activity spreading is the result of the joint 

activation of horizontal excitatory connections within V1 and V2 and feedback connections 

from V2 to V1. However, Raizada and Grossberg (2001) also indicated that activity 
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enhancement in the laminar model of perceptual grouping quickly decays as a function of the 

distance from the start of the tracing. This is not consistent with neurophysiological data 

showing a comparable amount of response modulation at near and far recording sites relative 

to the start of tracing (Pooresmaeili & Roelfsema, 2014; Roelfsema et al., 2003) and with 

behavioral findings showing undiminished capacity to trace spatially extended contours 

(McCormick & Jolicoeur, 1991, 1994).  

Brosch et al. (2015) developed a new learning scheme called RELEARNN 

(REinforcement LEArning in Recurrent Neural Networks) designed to teach the recurrent 

network to perform contour tracing. They found that the proposed algorithm requires extensive 

amount of training (> 100.000 trials) to achieve satisfactory level of performance. In contrast, 

behavioral studies demonstrated that contour tracing is accomplished without extensive 

practice. For example, in a study of Jolicoeur et al. (1991), participants completed just a single 

block of 24 practice trials prior to the start of an experimental session. Moreover, the 

participants did not receive feedback about their performance during the experimental session. 

These observations suggest that the participants may engage pre-configured network such as 

the F-WTA network to solve the contour tracing task. In addition, Brosch et al. (2015) showed 

that the network trained with the RELEARNN was able to generalize contour tracing to new 

inputs that had not been presented during training. Interestingly, they also observed that the 

tracing accuracy dropped from 97% when the network was tested on contours of 5-pixel length 

to 81% when tested on larger 6-pixel contours. On the other hand, the F-WTA network traces 

arbitrarily long contours without degrading its neural representation. 

An alternative account of mental contour tracing is offered by the selective tuning (ST) 

model of attention (Rothenstein & Tsotsos, 2014; Tsotsos, 2011; Tsotsos et al., 1995). It was 

designed to demonstrate how a multi-layered neural architecture, mimicking the hierarchy of 

visual cortical areas, achieves spatial localization of the most salient object in the input image. 

Selective tuning operates by making multiple traversals through the visual processing 

hierarchy. First, task-based priming communicates to the network what to look for and where 

to find it in the incoming input image. Next, presentation of the stimulus initiates feedforward 

processing, resulting in a selection of the most salient location. In the next step, feedback 

processing refines the initial selection and resolves ambiguities about the target location. The 

ST model was successful in explaining and predicting various behavioral and neural signatures 

of visuospatial selection (reviewed in Tsotsos, 2011).  

Tsotsos and Kruijne (2014) described how to embed ST into a larger neural architecture, 

called ST-CP, which is capable of implementing complex cognitive programs, including visual 
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routines. On the one hand, in the ST-CP, contour tracing is achieved by discrete jumps of the 

focus of attention along the contour. To make the jump to the next fixation, the network needs 

to inhibit representations of already traced parts of the contour. On the other hand, empirical 

evidence suggests that attention spreads rather than moves along the contour (Houtkamp et al., 

2003; Roelfsema et al., 2010; Scholte et al., 2001). This means that representation of the near 

segment of the contour should remain active while the network traces its far segment (relative 

to the start), as illustrated in neurophysiological studies (Pooresmaeili & Roelfsema, 2014; 

Roelfsema et al., 2003). Also, Tsotsos and Kruijne (2014) did not mention how the ST-CP 

would handle tracing across L-, X-, and T-junctions. 

 A different approach to the neural basis of perceptual organization is offered by the 

mechanism of synchronization and de-synchronization of oscillatory activity (Wang, 2005). 

Neural recordings in the primary visual cortex indicated that synchronization was more likely 

to occur between cells that are closer in cortical space and between cells that represent similar 

perceptual features. For example, synchronization of the neural activity in the gamma range 

(30–100 Hz) is more likely to occur between neurons that have a similar orientation preference, 

suggesting that such a process is related to perceptual organization and feature binding 

(Eckhorn, 1999; Singer, 1999; Singer & Gray, 1995). Moreover, synchronization may support 

the routing of information in the cortex that leads to effective neural communication (Fries, 

2005; Salinas & Sejnowski, 2001; Ward, 2003). An example of a computational model 

implementing principles of neural synchronization is the locally excitatory, globally inhibitory 

oscillatory network (LEGION) (Wang, 1995; Wang & Terman, 1995, 1997).  

Chen and Wang (2001) demonstrated that LEGION can simulate contour tracing when 

temporal delays are introduced in connections between relaxation oscillators. With delays, the 

synchronized activity of oscillatory units behaves exactly as the spotlight of attention that 

moves along the contour. Contrary to this prediction, behavioral and neural data suggest that 

attention spreads rather than moves along the contour, as already discussed above in the context 

of the ST-CP model. Furthermore, LEGION can represent the whole contour only when there 

are no delays. However, without delays, no tracing occurs, and the synchronization of the 

oscillatory units corresponding to the target contour is achieved implausibly fast. Moreover, 

contour tracing in LEGION arises from the intrinsic network dynamics and cannot be cued or 

guided by external sources, as suggested by the results of Crundall, Cole, et al. (2008) and 

Donovan et al. (2017). In other words, LEGION cannot support state-dependent computation 

driven by the inputs (Rutishauser & Douglas, 2009).  
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In a direct test of the involvement of cortical synchrony in contour tracing, Roelfsema 

et al. (2004) found that synchrony was unrelated to contour grouping because the strength of 

the synchrony was weaker among neurons encoding the same contour relative to the synchrony 

among neurons encoding different contours. Instead, they found that the firing rate modulations 

better correlated with perceptual grouping. More generally, several authors expressed doubts 

about the possibility that the synchrony of oscillatory activity mediates cognitive computations 

(Merker, 2013, 2016; Ray & Maunsell, 2015; Shadlen & Movshon, 1999; Thiele & Stoner, 

2003).  

 In summary, we demonstrate that the asymmetric cooperative-competitive network, 

when embedded in a larger multi-scale architecture for contour and L-junction detection, can 

support the attentional labeling of connected image elements consistent with the dynamics of 

mental contour tracing. The model implements scale-dependent attentional filling-in, which 

incrementally builds a representation of the target contour and simultaneously suppresses 

representations of the distractor contours. In this way, the proposed model offers a neural 

interface for the interaction between visual perception and cognition as well as to implement 

incremental grouping (Roelfsema & Houtkamp, 2011).  
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APPENDIX. Quenching Threshold in the F-WTA Network 

 

Grossberg (1973) introduced the concept of the QT to describe the property of shunting 

competitive networks with a sigmoid activation function to enhance the response of all nodes 

receiving an input amplitude above some critical value and to suppress the activity of all other 

nodes. In a shunting network, the QT is determined by the network parameters, such as the 

slope of the sigmoid function. Marić and Domijan (2018) demonstrated that the F-WTA 

network also has a QT. However, in contrast to the shunting model, the QT in the F-WTA 

network is dynamic and directly depends on the activity of the excitatory nodes and inhibitory 

interneuron. To see this, consider the steady state of the F-WTA nodes receiving input with a 

maximal amplitude denoted by IIJ 

 

 𝑥𝐼𝐽
∗ = 𝐼𝐼𝐽 + 𝛼.  (A.1) 

 

According to Equations (1) and (2), xIJ(t) > y(t) for all t > 0 because dy/dt = 0 when y = 

xIJ - Tx. As a consequence, xIJ never receives lateral inhibition from the interneuron because of 

the strong retrograde inhibition imposed on the pathway from y to xIJ. Furthermore, the recurrent 

excitatory drive to xIJ is bounded above by the piecewise-linear function given by Equation (4). 

This is an activation function of the dendrite of the xIJ, which creates an additive gain for the 

soma of xIJ. Equation (A.1) implies that the set of winning nodes xIJ may be arbitrarily large. 

However, its size does not affect the capacity of the F-WTA network to faithfully represent all 

locations receiving IIJ.  

Along xIJ, inhibitory interneuron y must also reach its steady state because its activity is 

driven solely by the inputs from xIJ. The steady state of the inhibitory node y is given by 
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,  (A.2) 

 

where n is the number of xIJ. When β2 is chosen to be sufficiently large, and/or there are many 

nodes with maximal input xIJ, then 
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Node y thus computes the maximum over its input. It does not matter how many xIJ exist, 

because all excitatory drive to y vanishes as its activity approaches xIJ – Tx. 

The xIJ nodes, together with the inhibitory node, create the QT for the rest of the 

network, which is defined by 

 

 
* *

y IJ x yQT y T x T T     .   (A.4) 

 

Equation (A.4) indicates that the QT tracks the activity of the winning nodes. When the QT is 

set, it divides the remaining excitatory nodes into two subsets depending on whether their 

activity exceeds QT 
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This division is closely related to the behavior of the bistable neurons whose membrane 

potentials fluctuate between two discrete (so-called UP and DOWN) states (Cossart et al., 2003; 

Shu et al., 2003). Such neurons may implement AND gate between two independent sources of 

input signals (Kepecs & Raghavachari, 2007). Here, the QT dictates that both feedforward input 

and dendrite must be active to enable the node to enter the UP state. 

Equations (A.1) and (A.5) demonstrate that the steady state of excitatory nodes tracks 

the maximal input amplitude. In this way, it is possible to drive the network dynamics externally 

by modulating the input amplitude. Here, we do that by switching spatial cue Jij on and off. To 

illustrate the effect of spatial cueing on the QT, we ran a simulation presented in Figure 23. It 

illustrates the response of a small 1-D version of the F-WTA network with nearest-neighbor 

connectivity only. The input pattern is as follows 

 

  1.0 .9 .8 .7 .6I  .  (A.6) 

 

Before the cue was applied, all excitatory nodes crossed the QT, even though they 

received different input amplitudes. According to Equations (A.2) and (A.4), y* = 1.76 and QT 

= 1.56. Therefore, xi
* > QT for all i. After the cue J1 = 2 was applied at t = 300 ms, x1 activity 

increased to I1 + J1 + α = 4. The inhibitory node tracked this activity change and reached a new 

steady state y* = 3.45, which raised QT to 3.25. Now, xi < QT for all i > 1, leading to the 
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suppression of all non-cued nodes. After the cue was withdrawn at t = 600 ms, x1 returned to 

its former steady state given by I1 + α. Here, we allowed for longer cue duration in order to 

enable the network to reach its steady state. Withdrawal of the cue lowered the QT to its former 

value of 1.56. Also, it opened the opportunity for x2 to cross the QT and to initiate the 

propagation of activity enhancement or tracing. This simulation also illustrates that, because of 

its QT, the F-WTA network is capable of tracing across contour segments with variable input 

amplitudes, as demonstrated by Pooresmaeili et al. (2010).  

 

 

Figure 23. The relationship between the activity of the excitatory nodes x1, …, x5 and inhibitory node y 

in a response to the input pattern given by Equation (A.6).  
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SAŽETAK 

 

 

U radu su prikazani teorijski argumenti i empirijske potvrde za i protiv ideje da kognitivni 

procesi (mišljenje, rezoniranje, očekivanje, vjerovanje) ili emocije i motivacija mogu izravno 

utjecati na i mijenjati sadržaj vida. Prema hipotezi o modularnosti uma i Marrovoj računalnoj 

teoriji, percepcija je informacijski zatvoren modul s fiksnom, urođenom arhitekturom. Ona se 

zasniva na specifičnim načelima koja su bitno drugačija od općeg kognitivnog funkcioniranja. 

Percepcija mora biti kognitivno inpenetrabilna zato jer mora stvoriti točnu mentalnu 

reprezentaciju vanjskog svijeta i time omogućiti jedinki uspješno snalaženje u njemu. Suprotno 

tome, prema modelu prediktivnog kodiranja, kao suvremenog oblika zagovaranja 

penetrabilnosti vida, mozak stalno generira predikcije koje olakšavaju i usmjeravaju 

procesiranje osjetnih informacija i posljedično mijenjaju ono što vidimo. U novije vrijeme, 

mnoga bihevioralna i neuroznanstvena istraživanja pokazuju da se vid doista mijenja pod 

utjecajem naučenih asocijacija i konteksta, kao i socijalne kognicije i emocija, što potvrđuje da 

je percepcija kognitivno penetrabilna. Međutim, ne slažu se svi s ovim zaključkom budući da 

su identificirane brojne metodološke i/ili interpretacijske poteškoće koje otežavaju donošenje 

definitivnog zaključka. Na kraju, opisani su mogući smjerovi za daljnja teorijska i empirijska 

istraživanja koja bi nas trebala približiti razrješenju ovog složenog pitanja.  

 

Ključne riječi: eksperimentalna metodologija, emocije, kognicija, kognitivna neuroznanost, vid 
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SUMMARY 

 

 

The paper reviews theoretical arguments and empirical findings in support and against the idea 

that cognitive processes (thinking, reasoning, expectations, beliefs) or emotions and motivation 

can directly influence and change the content of visual perception. According to the modularity 

of mind hypothesis and Marr’s computational theory, perception is informationally 

encapsulated module with fixed, innate architecture. It is based on a specific set of principles 

that are much different from general cognitive functioning. Perception must be cognitively 

impenetrable because its task is to create accurate mental representation of the external 

environment that will enable individual to successfully navigate through it. In contrast, 

predictive coding model, as an example of modern advocate of penetrability of vision, assumes 

that brain constantly generates predictions that facilitates and redirects visual information 

processing and consequently alters what we see. Recently, many behavioural and brain studies 

revealed that visual perception is indeed altered under the influence of learned associations and 

context, as well as social cognition and emotions thus lending support to the claim that 

perception is cognitively penetrable. However, not all agree with this conclusion because there 

are many methodological and interpretational pitfalls identified in previous research that 

prevents reaching consensus. At the end, we described potential avenues for further theoretical 

and empirical research that will bring us closer to the answer to this perplexing question. 

 

Keywords: cognition, cognitive neuroscience, emotions, experimental methodology, visual 

perception 
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1. UVOD 

 

 

Pretpostavka da je percepcija kognitivno penetrabilna podrazumijeva da različiti 

kognitivni procesi poput mišljenja, vjerovanja, emocija, potreba i drugih mogu izravno 

djelovati na vidno procesiranje tako da mijenjaju njegov konačni rezultat. Dakle, ono što 

mislimo i osjećamo doslovno može utjecati na način na koji vidimo svijet oko sebe (Balcetis, 

2016; Vetter i Newen, 2014). U terminima obrade informacija u hijerarhijski organiziranom 

sustavu kao što je vid, to znači da silazni ili odozgo-prema-dolje (engl. top-down) procesi mogu 

direktno utjecati na uzlazne ili odozdo-prema-gore (engl. bottom-up) procese (Palmer, 1999). 

Međutim, problematična posljedica kognitivne penetrabilnosti jest njezina interferencija s 

temeljnom zadaćom vida, a to je dostaviti što točniju informaciju o okolini radi lakšeg 

snalaženja u njoj (Marr, 1982). Iz toga proizlazi da vid nije toliko pouzdan izvor informacija 

kao što nam sugerira naše svakodnevno iskustvo (Lupyan, 2017b). Stoga je važno teorijsko i 

empirijsko pitanje postoji li barem dio vida koji je funkcionalno nezavisan od kognicije i 

emocija. S druge strane, ako su svi aspekti percepcije kognitivno penetrabilni, pitanje je na koji 

je način naše ponašanje usklađeno s fizikalnim obilježjima vanjskog svijeta. Ova pitanja od 

velike su važnosti ne samo za psihologiju nego i za filozofiju uma, neuroznanost, psihijatriju, 

pa čak i estetiku. Koliko je kognitivna penetrabilnost vida aktualno i važno pitanje pokazuje i 

činjenica da su nedavno dva časopisa Consciousness and Cognition1 i Frontiers in Psychology2 

objavili tematske brojeve posvećene ovoj temi. Cilj ovog rada je rasvijetliti prirodu 

pretpostavke o kognitivnoj penetrabilnosti vida te napraviti pregled teorijskih argumenata za i 

protiv, kao i empirijskih nalaza koji ih podržavaju. Također, ponudit će se i nove ideje za 

razrješenje ovog složenog pitanja.  

 

 

2. NEURONSKE OSNOVE VIDA 

 

U okviru neuroznanosti, vid je najistraženiji osjetni modalitet. Ova istraživanja pokazala 

su da vid nije jednostavan proces preslikavanja intenziteta svjetla kojeg registrira retina u 

unutarnju reprezentaciju u mozgu, već se sastoji od cijelog niza složenih neuronskih mreža 

                                                      
1 vol. 47, str. 1–112 (2017), Cognitive penetration and predictive coding. Dostupno na: 

http://www.sciencedirect.com/science/journal/10538100/47/supp/C?sdc=1 
2 vol. 8 (2017), Pre-cueing effects on perception and cognitive penetrability. Dostupno na: 

http://journal.frontiersin.org/researchtopic/4600/pre-cueing-effects-on-perception-and-cognitive-

penetrability#articles 
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specijaliziranih za analizu različitih aspekata vidnih podražaja (Bullier, 2001; Lennie, 1998). 

Zbog toga je u analizi problema kognitivne penetrabilnosti vida potrebno uključiti i 

neuroznanstvene spoznaje o interakcijama među kortikalnim centrima koji su u njega uključeni.  

Obrada vidnih informacija započinje apsorpcijom fotona svjetlosti u fotoreceptorima u 

retini, a nastavlja se u dva odvojena paralelna puta koji čine parvo i magno stanice. Parvo 

stanice osjetljive su na podražaje visoke prostorne frekvencije (jer imaju mala receptivna polja), 

niske temporalne frekvencije, niskog kontrasta i pokazuju oponentne reakcije na boje (crveno-

zeleno i plavo-žuto). S druge strane, magno stanice imaju velika receptivna polja, osjetljive su 

na podražaje niske prostorne frekvencije, visoke temporalne frekvencije, visokog kontrasta i ne 

pokazuju oponentnost na boje (Callaway, 2005). Parvo i magno stanica iz lateralne koljenaste 

jezgre (lateral geniculate nucleus - LGN) projiciraju u različite slojeve u primarnom vidnom 

korteksu, koji se još označava i kao V1 ili strijatni korteks ili Brodmanovo područje 17 te 

predstavlja prvi korak u kortikalnoj obradi vidnih signala. Projekcije iz primarnog vidnog 

korteksa prema ekstrastrijatnim područjima mogu se podijeliti u dva odvojena funkcionalna 

sustava ili vidna puta. To su ventralni i dorzalni put koji nastavljaju i dalje elaboriraju 

supkortikalne parvo i magno puteve. Ventralni put sudjeluje u identifikaciji objekata pa se još 

naziva i što put. S druge strane, dorzalni put ima važnu ulogu u lokalizaciji objekata u prostoru 

pa se još naziva i gdje put (Goodale i Milner, 1992; Ungerleider i Mishkin, 1982). Paralelni 

vidni putovi prikazani su na Slici 1. 
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Slika 1. Shematski prikaz paralelnih vidnih putova. Supkortikalni parvo i magno putovi koji su jasno 

odvojeni u retini i LGN-u, dalje se u korteksu razdvajaju i elaboriraju. Crni pravokutnici prikazuju 

anatomske strukture, a sivi iscrtani pravokutnici označavaju funkcionalnu specijalizaciju za boju, 

oblik i kretnju. Mrlje i trake se odnose na izgled strijatnog korteksa nakon bojenja citokromatskom 

oksidazom. Prilagođeno prema Coren i sur. (2003). 

 

Klasičan pristup razumijevanju vida polazi od pretpostavke da opisani vidni putovi čine 

hijerarhijsku strukturu u kojoj se vid postupno gradi od elementarnih senzornih obilježja koja 

se nadograđuju i elaboriraju u nizu kortikalnih centara i na kraju dovode do prepoznavanja 

objekta u anteriornom temporalnom režnju i prostorne lokalizacije objekta u posteriornom 

parijetalnom režnju (Lennie, 1998). Iz toga proizlazi da je tok informacija u vidnom sustavu 

jednosmjeran, odnosno implicira striktno uzlazno procesiranje. Međutim, neuroznanstvena 

istraživanja pokazuju da među vidnim centrima postoje i brojne povratne veze. One prenose 

široki raspon informacija od usmjeravanja pažnje, očekivanja, vrsta perceptivnog zadatka, 

radnog pamćenja pa do motornih naloga kojima dinamički mijenjaju odgovore neurona u 

vidnim putovima (Gilbert i Li, 2013), što upućuje na direktnu interakciju između uzlaznih i 

silaznih procesa u vidnom sustavu (Bullier, 2001). 

Na prvi pogled, čini se da sam pojam povratnih veza podrazumijeva funkcionalnu 

povezanost vida i kognicije. Međutim, povratne veze imaju drugačija obilježja od uzlaznih 
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veza. Povratne veze najčešće su modulatorne, što znači da mogu mijenjati aktivnost neurona 

jedino ako je on već aktivan preko praga, a tu aktivaciju su osigurale uzlazne veze (Sherman i 

Guillery, 2002). Unutar svakog kortikalnog centra, uzlazne i silazne projekcije ostvaruju 

sinaptičke kontakte u različitom sloju (Callaway, 2004) i ne formiraju snažne povratne petlje 

(Crick i Koch, 1998). Nadalje, povratne veze ne mogu mijenjati specifično obilježje za koje je 

neuron osjetljiv već samo pojačavaju ili smanjuju njegovu reakciju na isto obilježje (Martinez-

Conde i sur., 1999). Na osnovu opisanih obilježja, Macknik i Martinez-Conde (2009) zaključuju 

da je glavna uloga povratnih veza održavanje prostorne pažnje na dijelu vidnog polja. Prema 

Firestoneu i Schollu (2016) za raspravu o interakciji između percepcije i kognicije potrebno je 

razlikovati mijenjanje procesiranja od mijenjanja ulaza u vid. Na primjer, zatvaranjem očiju ili 

okretanjem glave možemo kontrolirati ono što doživljavamo vidom, ali tim postupkom 

mijenjamo samo ulaz u percepciju, ali ne i vidno procesiranje pa se to ne može uzeti kao 

argument za utjecaj kognicije na percepciju. Slično djeluje i prostorna pažnja budući da 

selektivno usmjerava obradu ka jednom dijelu vidnog polja te na taj način mijenja ulaz u vid. 

Zbog ovog se razloga ni njezino djelovanje ne može smatrati kognitivnim utjecajem na vid.  

 

 

3. VID KAO MODUL 

 

Polazeći od Fodorove (1983) hipoteze o modularnosti uma, Pylyshyn (1999) razvija i 

brani ideju o kognitivnoj inpenetrabilnosti percepcije. Prema Fodoru (1983), ljudski um sastoji 

se od središnjeg sustava, senzornih procesora i ulaznih modula. Središnji sustav čine kognitivni 

procesi kao što su mišljenje, rezoniranje i donošenje odluka. To je kognitivni aparat koji 

koristimo svjesno i namjerno kako bismo riješili neki problem ili kako bismo razumjeli neku 

situaciju. Uloga ulaznih modula jest da preuzmu informacije koje registriraju senzorni 

procesori, odnosno osjetni organi (npr. retina, pužnica, koža i drugi) i preoblikuju ih na način 

da budu dostupne središnjem sustavu. Temeljna razlika između središnjeg sustava i modula je 

u tome što su moduli informacijski zatvoreni (enkapsulirani), dok središnji sustav nije. To znači 

da moduli reagiraju samo na određenu vrstu informacija za koju su specijalizirani, dok središnji 

sustav može prihvatiti i obraditi bilo kakvu informaciju koja je relevantna za zadatak. Dakle, 

središnji sustav može primiti informaciju iz svih modula, ali ne može utjecati na module. On 

nema uvid u to što i kako moduli rade niti može usmjeravati obradu u njima, nego samo dobiva 

krajnji rezultat njihove obrade. Također, moduli ne mogu stupiti niti u međusobnu interakciju. 
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Štoviše, obrada informacija u modulima je automatizirana i oni imaju fiksnu neuralnu 

arhitekturu koja je urođena.  

Pylyshyn (1999) smatra da je vidna percepcija modul u Fodorovom smislu te riječi. Iz 

toga proizlazi da svi kognitivni procesi koji su dio središnjeg sustava ne mogu utjecati na vid 

te je on stoga kognitivno inpenetrabilan. Preciznije, onaj dio vida koji je kognitivno 

inpenetrabilan naziva se ranim vidom. On obuhvaća procese u rasponu od registracije svjetla 

na fotoreceptorima, analize različitih perceptivnih obilježja kao što su boja, oblik, pokret, 

tekstura, dubina pa do stvaranja jedinstvene trodimenzionalne reprezentacije površine objekata 

u okolini (Adelson i Bergen, 1991; Marr, 1982). Rani vid nije pod utjecajem pažnje pa se još 

naziva i vid prije pažnje (engl. pre-attentive vision) (Julesz i Bergen, 1983; Treisman i Gelade, 

1980). Za razliku od ranog vida, kasni vid je kognitivno penetrabilan, a sastoji se od 

prepoznavanja i identifikacije objekata na temelju informacija iz dugoročnog i semantičkog 

pamćenja, usmjeravanja pažnje i svjesnih pretpostavki o percipiranom subjektu. Dakle, 

semantičke informacije počinju djelovati na vidno procesiranje tek nakon što je rani vid odradio 

svoj posao, odnosno odredio reprezentaciju 3-D površine objekata u vidnom polju. Slika 2 

shematski prikazuje odnos ranog vida, kasnog vida i kognitivnih procesa. Ovdje treba istaknuti 

da se pojam vidna percepcija ponekad koristi za skupno označavanje i radnog i kasnog vida a 

ponekad samo za označavanje ranog vida. Kako bi izbjegli nejasnoće, u daljnjem tekstu ćemo 

pojam vidna percepcija koristiti samo kao sinonim za rani vid. 

Pylyshyn (1999) koncept kognitivne inpenetrabilnosti u velikoj mjeri temelji na 

Marrovoj (1982) teoriji prema kojoj se vid sastoji od tri odvojene razine obrade koje su 

posložene u uzlaznu hijerarhiju: prvobitna skica, 2.5-D skica i 3-D model. Pri tome, rani vid 

čine prvobitna skica i 2.5-D skica. Najprije prvobitna skica pronalazi promjene u intenzitetu 

svjetla na slici, odnosno detektira rubove. Rezultati obrade u prvobitnoj skici šalju se u 2.5-D 

skicu. Ona integrira reprezentaciju rubova s još složenijim aspektima podražaja kao što su 

stereopsis i pokret. Rezultati analize u 2.5-D skici se dalje prenose u 3-D model koji 

transformira reprezentaciju iz egocentričnog referentnog okvira u alocentrični, odnosno okvir 

koji ima ishodište na objektu. Drugim riječima, 3-D model osigurava reprezentaciju adekvatnu 

za prepoznavanje objekata. Iz navedenog opisa vidimo da rezultati obrade u prvobitnoj i 2.5-D 

skici utječu na prepoznavanje objekata, ali prepoznavanje objekata ne može utjecati na obradu 

u prvobitnoj skici ili u 2.5-D skici. Zbog toga su ove skice kognitivno inpenetrabilne 

(Raftopoulos, 2001). 
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Slika 2. Shematski prikaz odnosa između ranog vida, kasnog vida te kognitivnih i emocionalnih 

procesa. Temeljno pitanje preglednog rada je postoji li povratna veza označena iscrtanom strelicom. 

 

3.1. Argumenti za Kognitivnu Inpenetrabilnost Vida 

 

Prema Pylyshynu (1999), glavni argumenti za kognitivnu inpenetrabilnost percepcije su: 

1. Perceptivne iluzije ne nestaju nakon što shvatimo da se radi o iluziji. Znanje da naša 

percepcija ne odgovara stvarnom stanju u svijetu i dalje ne mijenja sadržaj percepcije. 

Na primjer, kod Müller-Lyerove iluzije, iako smo svjesni da su dvije linije koje 

uspoređujemo jednako duge, to ne mijenja našu percepciju da je linija koja završava 

krakovima prema van duža od linije koja završava krakovima prema unutra.  

2. Postoje mnoge pravilnosti u vidu koje ovise samo o vidnom podražaju i koje se 

automatski ekstrahiraju iz njega. Načela prema kojima funkcionira vid nisu ista kao i 

načela mišljenja i rezoniranja prema kojima funkcionira središnji sustav. Na primjer, 

kod percepcije svjetline, Gilchrist i sur. (1999) identificirali su pravilo prema kojem kao 

bijelu percipiramo onu površinu koja odašilje najveću količinu svjetla u danom 

podražaju. Ovakvo pravilo specifično je za percepciju svjetlina jer rješava konkretan 

računalni problem kako preslikati skalu relativnih omjera intenziteta svjetla na 

apsolutnu skalu svjetlina od bijelog do crnog. Ovo pravilo ne može se primijeniti u 

drugim domenama i ne predstavlja opće pravilo po kojem može funkcionirati središnji 

sustav. 

3. Neuropsihološka istraživanja pokazuju djelomičnu neovisnost vida od drugih 

kognitivnih funkcija. Na primjer, ljudi koji imaju vidnu agnoziju, odnosno oštećenje 

sposobnosti prepoznavanja objekata, nemaju istovremeno i problema s općim 
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kognitivnim funkcioniranjem (Farah, 1990). S druge strane, ljudi s deficitom u mišljenju 

i rezoniranju općenito nemaju problema s vidom. 

4. Mnogi empirijski nalazi koji se uzimaju kao argument za penetrabilnost vida zapravo 

se mogu reinterpretirati na način da znanje utječe na neku drugu razinu obrade 

informacija koja je izvan onoga što se definira kao rani vid. Na primjer, znanje može 

utjecati na usmjeravanje prostorne pažnje prije početka ranog vida ili može djelovati na 

procese donošenja odluka kojoj kategoriji pojedini podražaj pripada, što se odvija nakon 

završetka obrade u ranom vidu. Kako bi se preciznije odredilo na koju razinu obrade 

informacija djeluje neka eksperimentalna manipulacija, potrebna je mnogo preciznija 

kontrola relevantnih varijabli, na što su posebno upozorili Firestone i Scholl (2016), a o 

tome će biti više riječi u odjeljku Metodološki aspekti istraživanja penetrabilnosti vida. 

 

Pylyshynove argumente protiv penetrabilnosti vida dalje je razradio Raftopoulos (2009, 

2014). On se posebno fokusirao na neurofiziološka istraživanja o brzini protoka signala kroz 

vidni sustav kako bi jasno odredio temporalnu granicu između ranog i kasnog vida. Istraživanja 

mjerenja vremena latencije odgovora neurona u vidnim kortikalnim centrima upućuju na 

stvaranje vidne reprezentacije podražaja u tri koraka (Lamme, 2003; Lamme i Roelfsema, 2000; 

Roelfsema, 2005). Prvi korak odvija se unutar prvih 100 ms nakon zadavanja podražaja, kada 

traje prijenos signala od retine preko vidnih kortikalnih područja sve do inferiornog 

temporalnog korteksa. Ovaj je prijenos signala nesvjestan i otporan na povratne veze iz viših 

kortikalnih područja i zato se smatra čistim uzlaznim oblikom prijenosa vidnih informacija. 

Prvi korak rezultira ekstrahiranjem elementarnih obilježja kao što su boja, orijentacija rubova, 

pokret, tekstura koji su važni za kasnije prepoznavanje i kategorizaciju. U drugom koraku koji 

se odvija oko 120 ms nakon zadavanja podražaja počinju djelovati lateralne projekcije neurona 

unutar istog kortikalnog područja, kao i povratne veze u ranija područja poput primarnog 

vidnog korteksa. U ovom koraku formiraju se složenije vidne reprezentacije kao što je 

reprezentacija površina i razdvajanje lika od pozadine. Tek u trećem koraku koji se odvija 

između 150 i 200 ms nakon zadavanja podražaja signali iz frontalnih i prefrontalnih područja 

te mnemoničkih krugova u hipokampusu počinju modulirati perceptivno procesiranje u vidnom 

korteksu. Stoga Raftopoulos (2009, 2014) tvrdi da je tek treći korak vidnog procesiranja 

kognitivno penetrabilan, dok prva dva koraka čine procesi koji odgovaraju Marrovom konceptu 

ranog vida i nisu izravno pod utjecajem kognitivnih procesa. 
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3.1.1. Nesvjesno Zaključivanje Nasuprot Prirodnim Ograničenjima 

 

Temeljni problem percepcije je u tome što nije dovoljno određena samom retinalnom 

slikom. Naime, ista retinalna slika može biti posljedica različitih situacija u okolini i može 

dovesti do različitih interpretacija. Dakle, vidni sustav mora kreirati reprezentaciju okoline na 

osnovu djelomičnih informacija. Ovaj problem je vrlo složen i zahtijeva netrivijalna rješenja. 

Primjerice, živimo u trodimenzionalnom prostoru u kojem je važno odrediti udaljenost od 

objekata radi lakšeg snalaženja u prostoru. Međutim, slika na retini je dvodimenzionalna. Stoga 

vidni sustav mora rekonstruirati treću dimenziju na osnovu spajanja informacija iz dviju retina. 

Kako vidni sustav rješava ovaj problem? Klasični odgovor ponudio je von Helmholtz 

(1867/1924) konceptom nesvjesnog zaključivanja prema kojem vid koristi skrivene 

pretpostavke i znanje o vanjskom svijetu pomoću kojih dolazi do perceptivnih zaključaka o 

najvjerojatnijem stanju stvari u okolini koje je moglo proizvesti danu retinalnu stimulaciju. Pri 

tome, vid koristi procese slične zaključivanju i rješavanju problema kako bi sirove retinalne 

signale pretvorio u percepciju. Ljudi nisu svjesni odvijanja ovih procesa, već samo konačnog 

rezultata. Ove ideje dalje su razvili i nadogradili Gregory (1970) i Rock (1983) u okviru 

konstruktivističke škole mišljenja koja predstavlja dominantni teorijski pravac u suvremenoj 

znanosti o vidu (Palmer, 1999). Jedna od implikacija nesvjesnog zaključivanja je da je vid 

kognitivno penetrabilan jer je znanje i zaključivanje direktno uključeno u stvaranje vidne 

reprezentacije. Međutim, Pylyshyn (1999) smatra pogrešnim pripisivati vidu procese 

zaključivanja i rješavanja problema. Umjesto toga vid treba promatrati kao složeni sustav za 

obradu informacija koji radi po svojim specifičnim pravilima. 

Alternativno objašnjenje kako riješiti problem konstrukcije vidne reprezentacije na 

osnovu djelomičnih informacija ponudio je Marr (1982). On smatra da u ranom vidu postoje 

specijalizirani mehanizmi koji utjelovljuju rješenja zasnovana na prirodnim ograničenjima koja 

postoje u fizikalnom svijetu. Ovi mehanizmi evolucijom su ugrađeni u vidni sustav i aktiviraju 

se automatski kada gledamo neki podražaj i ne zahtijevaju procese zaključivanja i rješavanja 

problema. Pri tome, važno je napomenuti da ovi mehanizmi ne jamče uvijek točnu interpretaciju 

svih podražaja, nego samo onih koji se najčešće javljaju u danim uvjetima u našoj okolini.  

Na primjer, Marr i Poggio (1976) predložili su model stereopsisa koji rješava problem 

korespondentnosti, odnosno pronalazi korespondentne točke na obje retine i izračunava 

disparitet među njima. To nije jednostavno budući da postoji ogroman broj kombinacija 

uparivanja, tj. jedna točka u lijevom oku može odgovarati velikom broju točaka u desnom oku.  
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Kako bi riješili ovaj problem, Marr i Poggio (1976) identificirali su nekoliko prirodnih 

ograničenja koja odgovaraju karakteristikama okoline, a koja mogu poslužiti vidnom sustavu 

za lakše pronalaženje parova točaka. Jedno takvo ograničenje je kompatibilnost obilježja prema 

kojem se mogu uparivati samo slična obilježja jer isti objekt ne može proizvesti bitno drugačiju 

sliku u oba oka. Nadalje, Marr i Poggio (1976) su pokazali kako se dana ograničenja mogu 

ugraditi u arhitekturu neuronske mreže u obliku uzoraka ekscitacija i inhibicija neurona. Mreža 

se sastojala od neurona koji su kodirali različite disparitete točaka u obje retine. Računalne 

simulacije predložene mreže pokazale su da je uspješno pronalazila korespondentne točke i na 

taj način odredila dubinu na osnovu dispariteta dvije retinalne slike. Dakle, mreža nije trebala 

posebno eksterno znanje niti procese zaključivanja i rješavanja problema kako bi uparila točke 

iz obje retine. Znanje je ugrađeno u samu strukturu mreže poštujući postojeća prirodna 

ograničenja. 

 

 

4. KOGNITIVNA PENETRABILNOST VIDA 

 

4.1. Novi Pogled 

 

Koncepti kognitivne inpenetrabilnosti i modularnosti vida u suprotnosti su s 

eksperimentalnim nalazima nastalima unutar popularnog znanstvenog pokreta poznatog pod 

nazivom novi pogled (Bruner, 1957). Prema ovom gledištu, kognitivni procesi mogu utjecati 

na percepciju, stoga je ono što vidimo rezultat interakcije naših vjerovanja, želja, emocija, 

motivacije i jezika sa sirovim osjetnim informacijama. Bruner i Goodman (1947) su u brojnim 

eksperimentima pokazali da je percepcija pod utjecajem znanja i vjerovanja promatrača o 

svijetu koji percipira. Primjerice, siromašna djeca sustavno precjenjuju veličinu novčića u 

odnosu na bogatiju djecu, a gladni ljudi će prije percipirati hranu ili identificirati riječi povezane 

s hranom od sitih ljudi. Na osnovu ovakvih nalaza zaključili su da vrijednosti i potrebe 

pojedinca utječu na sve razine hijerarhijske strukture percepcije i tako mijenjaju način na koji 

percipiramo svijet.  

Slično von Helmholtzu, Bruner (1957) smatra da vid određuju dva bitna obilježja: 

kategorizacija i testiranje hipoteza. Vid se promatra kao proces sličan znanosti u kojem se 

formuliraju i testiraju hipoteze. Hipoteze se odnose na pripadnost objekta određenoj kategoriji. 

Ako se hipoteza pokaže pogrešnom, odbacuje se i kreira se nova hipoteza koja se zatim testira 

s obzirom na dane osjetne podatke. Na taj način, vid se kroz niz ciklusa testiranja i odbacivanja 

hipoteza postupno približava identitetu objekta, odnosno kategoriji kojoj pripada. Stoga se vid 
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može promatrati i kao oblik rješavanja problema u kojem ulazni signali koji dolaze kroz osjete 

predstavljaju problem koji treba riješiti. Nedostajući podaci potrebni za rješenje dolaze od 

silaznih procesa, odnosno znanja, očekivanja, potreba i vjerovanja. Rješenje problema, odnosno 

krajnji rezultat vida je kategorija kojoj pripada objekt koji se promatra. Iz ovih razmatranja 

proizlazi da nema razlike između načela po kojima funkcionira vid i načela po kojima 

funkcionira mišljenje. Popularnost ovog gledišta proizlazi i iz činjenice dobrog slaganja s 

našom intuicijom, odnosno svakodnevnim iskustvom. Na primjer, kada smo gladni, čak i neki 

neodređeni, neutralni podražaj možemo percipirati kao hranu. Kada smo uplašeni, i bezazleni 

podražaj kao što je šuštanje lišća na ulici percipiramo kao prijeteći što je ovjekovječeno u izreci 

u strahu su velike oči. Također, primjer za penetrabilnost su i mađioničarski trikovi u kojima 

mađioničar manipulira s onim što vidimo tako što kreira lažna očekivanja koja nas iznevjere i 

zbog toga zabavljaju.  

 

4.2. Teorijski Argumenti za Penetrabilnost Vida 

 

U novije vrijeme pokret novi pogled ponovno je oživio razvojem novih teorijskih 

konstrukata kao što je prediktivno kodiranje i Bayesijanski modeli percepcije (Clark, 2013; 

Friston, 2010; Hohwy, 2013; Lupyan, 2015; O'Callaghan, Kveraga, Shine, Adams i Bar, 2017; 

Vetter i Newen, 2014). Osnovna ideja potekla je od von Helmholtza (1867/1924) koji je 

predložio model eferentnih kopija koje generira motorni sustav kako bi predvidio senzorne 

posljedice izvršenja motornih naloga. Na taj način, mozak osigurava stabilnu percepciju 

položaja objekata nakon izvršenja pokreta očiju (Schubotz, 2015). Svrha prediktivnog 

kodiranja je skraćivanje vremena i smanjenje količine procesnih resursa potrebnih da se obradi 

ogromna količina senzornih informacija koje neprestano bombardiraju našu retinu (Huang i 

Rao, 2011). Koncept prediktivnog kodiranja pretpostavlja da mozak, u svrhu predviđanja kakve 

će vjerojatno biti nadolazeće senzorne informacije, kontinuirano stvara model vanjskog svijeta 

i mijenja ga i nadograđuje prema pravilima Bayesijanske statistike (Friston, 2010; Rao i 

Ballard, 1999).  

Model okoline oblikuje se na osnovu prošlih iskustava pohranjenih u pamćenju, 

kontekstualnih asocijacija, kao i senzornih informacija iz drugih osjetnih modaliteta. Naime, 

objekte opažamo u tipičnim uvjetima u kojima se često pojavljuju zajedno s drugim objektima, 

a to nam iskustvo omogućava učenje asocijacija među njima. Asocijacije potom postaju bogat 

izvor informacija kojima se rukovodimo prilikom identifikacije objekta. U slučaju 
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dvosmislenog podražaja, informacija o kontekstualnom okruženju olakšat će nam njegovu 

interpretaciju (Bar, 2004). 

Anatomska osnova za prediktivno kodiranje su povratni neuronski putovi od 

anteriornog temporalnog i posteriornog parijetalnog korteksa prema primarnom vidnom 

korteksu (Angelucci, Levitt, i Lund, 2002; Bullier, 2001). U V1 se uspoređuju silazni signali 

koji nose informaciju o predikciji s nadolazećim uzlaznim, odnosno senzornim signalima, a 

njihovo međusobno neslaganje predstavlja pogrešku predikcije. Informacija o pogrešci prenosi 

se uzlaznim vezama natrag do viših vidnih centara, gdje se prediktivni model mijenja, odnosno 

ispravlja sve dok se ne smanji pogreška predikcije. Drugim riječima, više razine povratnim 

vezama pokušavaju predvidjeti odgovore jedinica na nižim razinama u vidnoj hijerarhiji (Rao 

i Ballard, 1999). 

Na staničnoj razini, pretpostavlja se da su piramidalne stanice na površini korteksa 

nosioci informacije o veličini pogreške predikcije nastale usporedbom silaznih i uzlaznih 

signala, a da su piramidalne stanice u dubljim slojevima korteksa nosioci silaznih predikcija 

(Friston, 2008; Mumford, 1992). Nadalje, pretpostavlja se da pažnja omogućuje fleksibilno 

kontroliranje tolerancije s obzirom na preciznost usporedbi i pogrešaka predikcije. Pri tome, 

pažnja ostvaruje svoj učinak na neurone putem modulacije neurotransmisije acetilkolinom ili 

putem brze sinkronizacije oscilatorne aktivnosti (Feldman i Friston, 2010).  

Važna implikacija prediktivnog kodiranja jest da je vid interaktivan, dvosmjeran proces 

nadopunjavanja uzlaznih i silaznih signala. Drugim riječima, mozak nikada ne percipira okolinu 

kao praznu sliku, nego uvijek kreće od neke pretpostavke o tome kako bi okolina mogla 

izgledati. Friston (2010) navodi da mozak nastoji što je više moguće smanjiti iznenađenje, 

odnosno pogrešku predikcije te zbog toga stalno procjenjuje stanje u okolini aktivnim 

zaključivanjem, odnosno prediktivnim kodovima koji silaznim putovima ponderiraju uzorke 

ekscitacije u nižim vidnim centrima prema načelima Bayesijanske statistike. Stoga se model 

prediktivnog kodiranja može smatrati oblikom kognitivne penetrabilnosti vida (Lupyan, 2015; 

Vetter i Newen, 2014). Međutim, Macpherson (2017) upozorava da je moguće kreirati različite 

verzije modela prediktivnog kodiranja, među kojima i one koji ne podrazumijevaju 

penetrabilnost vida. 

 

4.3. Neuroznanstveni Argumenti za Penetrabilnost Vida  

 

Istraživanja funkcionalnim oslikavanjem mozga putem magnetske rezonance (fMRI) 

pokazala su da znanje o objektu može kreirati očekivanja koja mijenjaju aktivnost u vidnim 
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centrima koji reprezentiraju elementarna perceptivna obilježja kao što su boja i oblik. 

Vienbroucke, Fahrenfort, Meuwese, Scholte i Lamme (2016) prikazivali su ispitanicima nijansu 

žute boje koja se po svom tonalitetu nalazi na pola puta između crvene i zelene. Žuta boja 

prikazana je ili na objektu koji je tipično crven (npr. rajčica), objektu koji je tipično zelen (npr. 

krastavac) ili potpuno nepoznatom objektu. Koristeći tehniku dekodiranja neuronskih signala, 

pokazali su da mogu predvidjeti gledaju li ispitanici žutu boju na tipično crvenom ili tipično 

zelenom objektu samo na osnovu neuronskog odgovora na čistu crvenu ili zelenu boju u 

kortikalnom području V4 za koje se zna da ima važnu ulogu u reprezentaciji boja. Drugim 

riječima, neuronski odgovor na žutu boju bio je pomaknut prema crvenoj boji kada su je 

ispitanici gledali na rajčici ili prema zelenoj boji kada su je gledali na krastavcu. Slično tome, 

Kok, Brouwer, van Gerven i de Lange (2013) pokazali su da kreiranjem očekivanja o smjeru 

kretanja skupine točkica dolazi do promjene aktivnosti u ranim razinama vidne hijerarhije koja 

uključuju V1 i V2. Zanimljivo je da nije došlo do modulacije aktivnosti u V5 (MT) području, 

što bi se očekivalo s obzirom na spoznaje o reprezentaciji kretanja upravo u tom području. 

Socijalno i emocionalno znanje također može penetrirati u vid na što upućuju EEG i 

fMRI istraživanja percepcije lica, koja ima ključnu ulogu u socijalnim interakcijama. Kada 

ispitanici gledaju lica pripadnika iste socijalne grupe kojoj i sami pripadaju (iste rase ili 

arbitrarno formirane grupe) dolazi do pojačane aktivacije u fuziformnom girusu nego kada 

gledaju lica pripadnika druge grupe (Golby, Gabrieli, Chiao i Eberhardt, 2001; Van Bavel, 

Packer i Cunningham, 2008). U istom smjeru, percepcija lica iz iste grupe dovodi do pojačanog 

N170 vala koji se smatra najranijom komponentom vidnog procesiranja lica (Ratner i Amodio, 

2013). Nadalje, afektivna vrijednost podražaja utječe na vid vrlo rano, što se vidi iz moduliranja 

ERP signala u rasponu od 120 do 160 ms od zadavanja podražaja (Olofsson, Nordin, Sequeira 

i Polich, 2008). Ovo ima veliku važnost za preživljavanje jer signalizira jedinki prilaženje 

objektu ili njegovo izbjegavanje (Barrett i Bliss-Moreau, 2009). Kveraga i sur. (2015) su 

pokazali da emocionalne predikcije imaju važnu ulogu u brzom prepoznavanju prijetnje. 

Naime, otkrili su da se bihevioralni odgovor, kao i neuronska reakcija na prijetnju mijenja 

ovisno o tome radi li se o direktnoj ili indirektnoj prijetnji (gleda li prijeteća životinja direktno 

u opažača ili ne), što ukazuje na zaključak o integraciji afektivne informacije s vidnom u cilju 

što brže i točnije interpretacije prijeteće situacije. 

Kao glavni izvor silaznih signala, odnosno predikcija identificiran je orbitofrontalni 

korteks. To je dio frontalnog režnja koji je povezan s nizom važnih funkcija, od ponašajne 

inhibicije i emocionalne regulacije pa sve do reprezentacije potkrepljenja (nagrade) i donošenja 

odluka (O'Callaghan i sur., 2017). Njegova uloga u prepoznavanju objekata istraživana je 
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selektivnom stimulacijom ventralnog ili dorzalnog puta. Podražaji niske prostorne frekvencije 

primarno aktiviraju dorzalni put koji brzo aktivira orbitofrontalni korteks, a koji zatim šalje 

povratne silazne signale prema fuziformnom girusu u ventralnom putu. S druge strane, 

podražaji visoke prostorne frekvencije direktno stimuliraju fuziformni girus uzlaznim vezama 

unutar ventralnog puta (Kveraga, Boshyan i Bar, 2007). Sličnu brzu aktivaciju orbitofrontalnog 

korteksa koja prethodi aktivaciji temporalnog režnja, odnosno ventralnog puta pokazala su 

istraživanja u kojima su ispitanici procjenjivali koherentnost degradiranog podražaja (Horr, 

Braun i Volz, 2014) ili razlikovali lica od ne-lica (Summerfield, Lepsien, Gitelman, Mesulam i 

Nobre, 2006). Ovi rezultati upućuju na zaključak da orbitofrontalni korteks daje grubu 

inicijalnu procjenu kategorije kojoj objekt pripada, a ta procjena, putem silaznih veza, 

usmjerava i ubrzava prepoznavanje objekta u temporalnom režnju. Također, orbitofrontalni 

korteks igra važnu ulogu i u brzoj obradi afektivne vrijednosti podražaja (Pessoa i Adolphs, 

2010).  

 O'Callaghan i sur. (2017) smatraju da su i vidne halucinacije primjer za kognitivnu 

penetrabilnosti ranog vida. Analiza sadržaja halucinacija pokazuje da se u njima često javljaju 

poznati ljudi, lica, objekti ili kućni ljubimci (Barnes i David, 2001). Nadalje, učestalost i jačina 

halucinacija povezana je s raspoloženjem i fiziološkim stanjem kao što je stres ili umor (Waters 

i sur., 2014). U okviru modela prediktivnog kodiranja, halucinacije su rezultat pretjerane 

aktivacije kontekstualnih asocijacija, autobiografskih sjećanja i emocionalnih stanja koja 

pomiču balans između uzlaznih i silaznih procesa na način da daju veći ponder silaznim 

procesima. Drugim riječima, internalno generirane predikcije kod halucinacija dominiraju 

vidom usprkos suprotnim senzornim signalima. Potvrdu za ovu pretpostavku daju istraživanja 

koja pokazuju abnormalno pojačanu aktivnost upravo u kortikalnim centrima poput 

orbitofrontalnog korteksa koji predstavljaju izvor silaznih signala tijekom normalne vidne 

percepcije (Shine, O'Callaghan, Halliday i Lewis, 2014). 

 

4.4. Bihevioralni Nalazi za Penetrabilnost Vida 

 

U zadnjih dvadesetak godina objavljen je veliki broj istraživanja koja ukazuju na 

kognitivnu penetrabilnost vida. Detaljan popis ovih studija dali su Firestone i Scholl (2016). U 

nastavku smo odabrali i detaljnije prikazali nekoliko studija koje su izazvale najviše polemika 

te koje su motivirale raspravu o metodološkim i interpretacijskim problemima, o kojima će biti 

više riječi u zasebnom odjeljku.  
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Bhalla i Proffitt (1999) ispitivali su odnos percepcije nagiba brda i fiziološkog 

potencijala pojedinca. U četiri eksperimenta pokazali su da se brda čine strmijima kada su ljudi: 

opterećeni nošenjem teškog ruksaka, umorni nakon dugog trčanja, slabe tjelesne kondicije i 

stariji ili lošijeg zdravlja. U eksperimentu s nošenjem teškog ruksaka ispitanici su davali tri 

vrste procjene nagiba brda: verbalne, vidne i taktilne. Zanimljiv nalaz je da se verbalno i vidno 

precjenjivanje nagiba brda povećavalo s opadanjem fiziološkog potencijala zbog opterećenja 

ruksakom, ali su taktilne procjene ostale točne. Bhalla i Proffitt (1999) su iz ovoga zaključili da 

je motorički odgovor nesvjestan i daje točnije procjene nagiba, čak i nakon verbalnih uputa o 

kutu dok ga ispitanik gleda. 

Witt, Proffitt i Epstein (2004) su proveli nekoliko eksperimenata u kojima su ispitivali 

ovisi li efekt fizičkog napora na percipiranu udaljenost predmeta o predviđanju ispitanikove 

uspješnosti o vlastitoj izvedbi zadatka. Dobiveni rezultati sugeriraju da je percipirana udaljenost 

u funkciji stvarne udaljenosti koja je određena optičkim varijablama, ali i namjerom za akcijom 

i naporom povezanim s tom namjerom. Tako, primjerice, bacanje teške lopte na metu u odnosu 

na laku loptu povećava procjene udaljenosti te mete. Nadalje, pokazalo se da konzumiranje 

glukoze nakon gladovanja dovodi do toga da se nagib brda percipira manjim (Schnall, Zadra i 

Proffitt, 2010), a da se udaljenosti percipiraju kraćima (Cole, Balcetis i Dunning, 2013) nego 

nakon konzumacije nekaloričnog sladila. Isto tako, negativno raspoloženje čini brdo strmijim 

u odnosu na pozivno raspoloženje (Riener, Stefanucci, Proffitt i Clore, 2011). 

Kognitivni i emocionalni utjecaji na percepciju nisu ograničeni samo na percepciju 

spacijalnih obilježja kao što su nagib ili udaljenost, nego su otkriveni i u području percepcije 

svjetline i boje. Goldstone (1995) je ispitivao utjecaj kategorizacije na percepciju boje. 

Ispitanici su najprije učili povezati brojke i slova s određenom bojom u rasponu od crvene do 

ljubičaste. Pri tome, slova su sustavno prikazivane u crvenijim tonalitetima, a brojke u plavljim 

(ili obrnuto za drugu grupu ispitanika). Ključni dio eksperimenta je bio u tome da je jedno slovo 

(E) i jedna brojka (osam) uvijek prikazivana u istoj boji koja je po svom tonalitetu bila negdje 

na pola puta između crvene i ljubičaste. U drugom dijelu istraživanja ispitanici su podešavali 

boju brojki i slova. Pokazalo se da je kategorija objekta utjecala na prosudbu boje. Ispitanici su 

slovo E sustavno procjenjivali crvenijim nego brojku osam (plavlje za drugu grupu ispitanika).  

Banerjee, Chatterjee i Sinha (2012) ispitivali su može li dosjećanje (ne)etičkih djela 

utjecati na percepciju svjetline. Zadatak ispitanika bio je prisjetiti se (ne)etičnih djela iz vlastite 

prošlosti i detaljno ih opisati uz prateće emocionalne doživljaje. Nakon toga trebali su na 

numeričkoj skali od jedan do sedam procijeniti stupanj svjetline sobe u kojoj su boravili. 

Rezultati su pokazali da su ispitanici koji su opisali neetična djela sobu procijenili tamnijom u 
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odnosu na ispitanike koje su opisali etička djela. Slično tome, Song, Vonasch, Meier i Bargh 

(2012) su ispitivali procjenjuju li ljudi nasmiješena lica svjetlijima u odnosu na namrštena lica. 

Pretpostavili su da metaforički izrazi poput svijetli osmjeh, koji postoji u mnogim jezicima kao 

što su engleski, njemački, talijanski, kineski ili ruski, imaju podlogu u konceptualnom 

preslikavanju facijalnih ekspresija na percepciju svjetline. Drugim riječima, pretpostavili su da 

je osmjeh, odnosno pozitivno raspoloženje povezano sa svijetlim nijansama, dok je mrštenje, 

odnosno negativno raspoloženje povezano s tamnijim nijansama boje. Ispitanicima su 

prezentirana po dva shematska lica (smajlića), jedno nasmiješeno i jedno namršteno, pri čemu 

su oba lica bila izjednačena po svjetlini. U jednom eksperimentu zadatak ispitanika je bio da 

procijene koje je lice svjetlije, a u drugom da daju apsolutnu procjenu svjetline na numeričkoj 

skali. Rezultati su pokazali da ispitanici nasmiješeno lice procjenjuju svjetlijim od namrštenog 

lica neovisno o vrsti procjene koju daju. Isti efekt dobiven je i sa stvarnim licima čime je 

povećana ekološka valjanost ovog nalaza. Štoviše, razlika u procjenama svjetline je bila veća 

za stvarna lica nego za shematska lica.  

 

 

5. METODOLOŠKI ASPEKTI ISTRAŽIVANJA PENETRABILNOSTI VIDA 

 

Problem s originalnim istraživanjima Brunera i njegovih suradnika, koja su inspirirala 

pokret novi pogled u percepciji, je u tome što nisu kasnije replicirana. Na primjer, pokazalo se 

da utjecaj socioekonomskog statusa na procjenu veličine novčića postoji samo kada se procjena 

daje na osnovu dosjećanja, a ne kada se on direktno gleda. Nadalje, neki vrijedni objekti ili 

simboli nisu izazivali isti efekt kao novčići u originalnoj studiji. Također, otkriven je velik broj 

moderirajućih varijabli, što je sve ukazivalo na nedovoljnu kontrolu i nedostatnu metodološku 

rigoroznost (Firestone i Scholl, 2016).  

Firestone i Scholl (2016) smatraju da se slični problemi javljaju i u suvremenim 

istraživanjima. Napravili su detaljnu analizu metodologije i interpretacije rezultata istraživanja 

koja idu u prilog penetrabilnosti vida te su zaključili da se isti efekti mogu objasniti i bez 

pozivanja na utjecaj kognicije ili emocija. Najvažniji doprinos njihovog rada je u isticanju 

zahtjeva za poboljšanjem znanstvene metodologije i kontrole u provedbi istraživanja. 

Konkretno, izdvojili su šest metodoloških i interpretacijskih poteškoća koja otežavaju 

donošenje suda o kognitivnoj penetrabilnosti vida i koje će morati uzeti u obzir sva buduća 

istraživanja. To su: istraživačka strategija usmjerena na potvrđivanje hipoteza, percepcija 
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nasuprot prosudbe, zahtjevi eksperimenta i pristranost pri odgovaranju, razlike u elementarnim 

obilježjima, periferni efekti pažnje i pamćenje nasuprot prepoznavanju. 

 

5.1. Istraživačka Strategija Usmjerena na Potvrđivanje Hipoteza 

 

Eksperimentalna hipoteza može se provjeriti na dva načina: pronalaženjem efekta koji 

je u skladu s teorijom i odsustvom efekta kada teorija predviđa njegovu odsutnost. U većini 

istraživanja o kognitivnoj penetrabilnosti korišten je samo prvi pristup. Stoga, Firestone i Scholl 

(2016) smatraju da nedostaje mnogo potencijalno važnih nalaza koji mogu pomoći u razrješenju 

debate o kognitivnoj (in)penetrabilnosti vida. Tek u novije vrijeme počeo se koristiti i drugi 

način provjere suprotstavljenih teorija testiranjem jedinstvenih opovrgavajućih hipoteza. 

Konkretan primjer razlikovanja potvrđujućih i opovrgavajućih hipoteza vidljiv je u 

istraživanjima Firestonea i Scholla (2014) koji su bili inspirirani zanimljivom zgodom iz 

povijesti umjetnosti poznatom pod nazivom El Grecova pogreška. El Greco bio je slavni 

španjolski slikar iz razdoblja manirizma koji je slikao neobično izduljene ljudske figure. 

Analizirajući njegove slike te kako bi pokušali objasnili izobličenja likova, povjesničari 

umjetnosti krivo su pretpostavili da je El Greco bolovao od posebno jakog oblika astigmatizma. 

Radi se o urođenoj deformaciji rožnice zbog koje je cijeli svijet percipirao izduljeno pa je stoga 

tako i slikao. Međutim, nekoliko istraživača je argumentiralo da se radi o pogrešnom 

zaključivanju i da El Greco najvjerojatnije nije svijet doživljavao na izduljen način. Naime, u 

tom bi slučaju i njegova slikarska platna trebala biti izduljena pa zapravo tragovi 

pretpostavljenih distorzija ne bi trebali biti vidljivi na samim slikama (Anstis, 2002; Firestone, 

2013). Slična pogreška javlja se i prilikom interpretacije nalaza o silaznim procesima. Stoga 

Firestone i Scholl (2016) preporučaju da se u budućim istraživanjima podjednako koriste i 

potvrđujuće i opovrgavajuće hipoteze. 

 U replikaciji istraživanja o utjecaju negativnog ili pozitivnog raspoloženja na percepciju 

svjetline, Firestone i Scholl (2014) su tražili od ispitanika da procjenu svjetline sobe daju na 

skali nijansi sivih tonova, a ne na numeričkoj skali. Pri tome, očekivali su da će se utjecaj 

raspoloženja na percepciju svjetline poništiti. Ako svijet zaista izgleda tamnije (ili svjetlije) 

nakon indukcije negativnog (ili pozitivnog ) raspoloženja, tada će i skala s nijansama sive boje 

također potamniti (ili posvijetliti) do istog nivoa kao i soba pa će ispitanici birati istu nijansu 

sive, odnosno neće biti razlike u procjenama svjetline u uvjetu pozitivnog i negativnog 

raspoloženja. Međutim, razlika u procjenama svjetline pojavila se i u ovom slučaju. Dakle, efekt 

se pojavio čak i u situaciji kada nije trebao, što ukazuje na važnost formuliranja i ispitivanja 
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jedinstvenih opovrgavajućih predviđanja. Drugim riječima, efekt koji su dobili Banerjee i sur. 

(2012) ne može biti posljedica utjecaja emocija na percepciju, nego na neki drugi proces. U 

istom smjeru, Firestone i Scholl (2014) smatraju da su i rezultati istraživanja utjecaja 

kategorizacije na percepciju boje koje je dobio Goldstone (1995) također posljedica El Grecove 

pogreške. Naime, uočili su da je u njegovom istraživanju podražaj čiju su boju ispitanici 

podešavali zapravo bio kopija ciljnog slova. Dakle, ispitanici su istovremeno gledali dva 

podražaja iste boje. Ako je kategorijalno znanje djelovalo na jedan podražaj, trebalo je imati 

isti utjecaj i na drugi pa bi se efekti opet trebali međusobno isključiti. Budući da je razlika u 

procjeni boje ipak dobivena, ona ukazuje na to da nije riječ o perceptivnom efektu kao i u 

prethodnom istraživanju. 

 

5.2. Percepcija Nasuprot Prosudbe 

 

Budući da je teško odrediti granicu između kognicije i vida, često nije jasno je li ono što 

vidimo posljedica nekog kognitivnog stanja ili su naši zaključci ili mišljenja posljedica onoga 

što vidimo. Npr. možemo percipirati boju ili veličinu nekog objekta (cipele), ali možemo samo 

prosuđivati o njegovoj skupoći, udobnosti i sl. Iz ovog je razloga moguće da su rezultati u 

istraživanjima o kognitivnoj penetrabilnosti posljedica djelovanja silaznih procesa na prosudbu, 

a ne na vid. Stoga će buduća istraživanja morati uzeti u obzir razliku između vida i prosudbe te 

ih empirijski razdvojiti kako bi se izbjegle krive interpretacije nalaza. 

Kao primjer ovog problema mogu se navesti rezultati koje su dobili Witt i sur. (2004) o 

utjecaju fizičkog napora na percepciju udaljenosti mete. Alternativno objašnjenje ovog nalaza 

jest da su ispitanici prilikom davanja odgovora jednostavno uzeli u obzir i neperceptivne faktore 

kao što je težina lopte i da nije došlo do stvarne promjene u percepciji udaljenosti. U skladu s 

tom interpretacijom, Woods, Philbeck i Danoff (2009) su odvojili vidnu percepciju od prosudbe 

tako da su ispitanicima dali detaljne upute o tome kako da daju svoje odgovore. Naime, 

ispitanici su morali odgovoriti koliko daleko im objekt stvarno izgleda i da se pri tome potrude 

isključiti sve druge stvari zbog kojih imaju osjećaj da se meta nalazi na nekoj drugoj udaljenosti 

te da se potrude zanemariti taj osjećaj udaljenosti mete. Pokazalo se da se uz ovakvu uputu efekt 

težine lopte gubi, što znači da su rezultati koje su dobili Witt i sur. (2004) ipak odražavali 

mišljenje odnosno procjenu ispitanika o udaljenosti, a ne kako su tu udaljenost doista 

percipirali. Međutim, Schnall (2017) smatra da Firestone i Scholl (2016) ne uzimaju u obzir 

ključne procese koji oblikuju prosudbu: nemogućnost čovjeka da introspektivno pristupi 

razlozima u podlozi svojih prosudbi, dinamiku razgovora u kontekstu eksperimentalnih 
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istraživanja i pogrešne atribucije. Prema njoj perceptivni procesi funkcioniraju kao i procesi 

prosudbe budući da nisu dostupni svijesti i služe adaptivnom funkcioniranju. 

 

5.3. Zahtjevi Eksperimenta i Pristranost pri Odgovaranju  

 

Zahtjevi zadatka predstavljaju važnu prijetnju unutrašnjoj valjanosti eksperimentalnih 

istraživanja (Shaughnessy, Zechmeister i Zechmeister, 2012). Naime, sva istraživanja u 

psihologiji provode se u socijalnom okruženju te uvijek postoji određena interakcija između 

eksperimentatora i ispitanika. Pri tome, ispitanici nisu pasivni sudionici, nego se aktivno trude 

shvatiti pravu svrhu eksperimentalne manipulacije. Također, trude se biti dobri ispitanici, 

odnosno usklađuju svoje ponašanje i odgovore s onim što oni misle da je prava svrha 

istraživanja kako bi ugodili eksperimentatoru. Zbog toga je potrebno uložiti veliki trud kako bi 

se sakrili svi znakovi koji ukazuju na hipotezu istraživanja. Klein i sur. (2012) upozoravaju da 

se u novijim istraživanjima sve manje pažnje posvećuje ovom pitanju, što otežava otkivanje 

stvarnih efekata i doprinosi problemu replikabilnosti psihologijskih istraživanja.  

Kao primjer ovog problema možemo navesti istraživanje koje su proveli Bhalla i Proffitt 

(1999) o utjecaju fizičkog napora na percepciju nagiba brda. Naime, moguće je da ispitanici ne 

doživljavaju brdo strmijim zbog nošenja teškog ruksaka, nego prilagođavaju svoje odgovore 

kako bi udovoljili očekivanjima eksperimentatora. U skladu s tom interpretacijom, Durgin i sur. 

(2009) su pokazali da je efekt ruksaka nestao u situaciji kada je ispitanicima dana uvjerljiva (ali 

lažna) prikrivena priča o svrsi nošenja ruksaka. Konkretnije, jednoj grupi ispitanika je 

objašnjeno da u ruksaku nose elektromiografsku opremu koja služi za nadgledanje mišića 

gležnja. U tom uvjetu, procjene nagiba brda nisu se razlikovale od kontrolne grupe koja nije 

nosila ruksak. Nadalje, ispitanici su nakon mjerenja dali svoje mišljenje o provedenom 

istraživanju te je dio ispitanika naveo očekivanje da će nošenje ruksaka promijeniti percepciju 

nagiba. Dodatna je analiza pokazala da se efekt ruksaka pojavio upravo kod onih ispitanika koji 

su bili svjesni hipoteze istraživanja. U sljedećem istraživanju, Durgin, Klein, Spiegel, Strawser 

i Williams (2012) najprije su tražili od ispitanika da daju procjene nagiba brda, a zatim su im 

postavili nekoliko pitanja o tome koliko je težak ruksak te da li je ruksak utjecao na njihovu 

procjenu nagiba. Nakon toga, ponovno su tražili od ispitanika da daju procjene nagiba brda i 

pokazalo se da se efekt ruksaka izgubio nakon druge procjene. Iz toga možemo zaključiti da su 

dobro osmišljene prikrivene priče nužne u istraživanjima kognitivne penetrabilnosti vida te da 

je obvezno provesti debrifing nakon provedenog istraživanja, odnosno pitati ispitanike što misle 

o eksperimentu kako bi se utvrdilo jesu li bili svjesni njegove prave svrhe. 
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5.4. Razlike u Elementarnim Obilježjima 

 

Pri dizajnu istraživanja potrebno je obratiti pažnju i na manipulaciju podražajima u 

eksperimentalnim uvjetima. Npr. utjecaj uzbuđenja na spacijalnu percepciju možemo provjeriti 

usporedbom grupa visoke i niske razine uzbuđenja na percepciju istog podražaja ili možemo 

izmjeriti kako ispitanici percipiraju udaljenost uzbudljivog i neuzbudljivog podražaja. Iako oba 

pristupa imaju prednosti i nedostatke, jedna od poteškoća pri manipulaciji podražajima u 

eksperimentalnim uvjetima je mogućnost da je namjeravana silazna manipulacija pomiješana s 

promjenama u fizičkoj (uzlaznoj) razini obilježja podražaja i da te suptilne razlike na uzlaznoj 

razini mogu biti odgovorne za izmjerene razlike u eksperimentalnim uvjetima. Firestone i 

Scholl (2016) smatraju važnim razdvojiti djelovanje silaznih od uzlaznih varijabli na način da 

se primjeni silazni faktor, a eliminira uzlazni faktor, ili obrnuto. Primjerice, Levin i Banaji 

(2006) su pokazali da lica Afroamerikanaca izgledaju tamnije od bijelih lica, čak i kada se 

izjednače po prosječnoj svjetlini što ukazuje na djelovanje silaznog faktora znanja o rasi. S 

druge strane, Firestone i Scholl (2016) su replicirali ovo istraživanje sa zamagljenim verzijama 

lica kako bi se eliminirala informacija o rasi, a istaknule fizičke razlike na uzlaznoj razini. 

Pokazalo se da je nakon zamagljivanja većina ispitanika izjavila da su oba lica iste rase (pa čak 

i da je riječ o istoj osobi), ali su i dalje zamagljeno crno lice procjenjivali tamnijim od 

zamagljenog bijelog lica, što ukazuje na djelovanje neke uzlazne varijable, a ne silazne varijable 

kao što je rasa. Međutim, Baker i Levin (2016) su zaključili da su Firestone i Scholl podcijenili 

sposobnost ispitanika da detektira rasu na zamagljenoj slici budući da je pitanje o rasi bilo 

otvorenog tipa. Kada se umjesto pitanja otvorenog tipa koristi metoda prisilnog izbora pokazalo 

se da je 75 – 80% ispitanika točno odredilo rasu. Stoga su potrebna daljnja istraživanja kako bi 

se razriješilo pitanje mogu li i u kojim uvjetima ispitanici detektirati rasu na zamagljenim 

slikama. U svakom slučaju, sva buduća istraživanja morat će posvetiti mnogo više pažnje 

kontroli fizičkih karakteristika podražaja. 

 

5.5. Efekti Usmjeravanja Pažnje  

 

Selektivna pažnja je blisko povezana s vidom jer usmjeravanjem pažnje možemo 

promijeniti ono što vidimo, pa čak i naglasiti neke objekte i učiniti ih jasnijima. Mijenjanje 

onoga što vidimo na način da selektivno odabiremo različite lokacije slično je mijenjanju onoga 

što vidimo pokretima očiju jer u oba slučaja mi odabiremo ulaz u vid. Međutim, u oba slučaja 

utjecaj pažnje je nezavisan od razloga za usmjeravanje pažnje, odnosno pažnja nije osjetljiva 
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na sadržaj te namjere ili vjerovanja pa se takav utjecaj ne može smatrati kognitivnom 

penetracijom vida (Firestone i Scholl, 2016). S druge strane, Lupyan (2017a) smatra da neki 

drugi oblici pažnje, kao što su pažnja usmjerena na obilježja ili na semantičke kategorije doista 

mijenjaju sadržaj vida na način da mijenjaju izgled objekta. Pri tome je ponudio nekoliko 

demonstracija u kojima dodatna informacija o tome što se nalazi na slikama bitno mijenja 

percepciju slike (iako bi zagovornici teze o inpenetrabilnosti vida rekli da mijenja interpretaciju, 

a ne percepciju slike). 

Stoga je važno u budućim istraživanjima kontrolirati ili izmjeriti efekt usmjeravanja 

spacijalne pažnje kako bi ga se razlikovalo od drugih silaznih procesa. Također, važno će biti 

razlučiti ima li pažnja usmjerena na obilježja ili na semantičke kategorije drugačiji utjecaj na 

vid u odnosu na spacijalnu pažnju. Na primjer, istraživanja o dvosmislenim slikama (npr. 

Neckerova kocka ili slika patka-zec) pokazala su da ispitanici mogu voljnom kontrolom odlučiti 

koju će od dvije interpretacije percipirati, što bi se moglo interpretirati kao argument za 

penetrabilnost vida (Churchland, 1988). Naknadna istraživanja pokazala su da se ovaj efekt 

zapravo svodi na usmjeravanje spacijalne pažnje na različite dijelove slike koji dobivaju 

prednost u obradi i rezultiraju preferiranjem jedne interpretacije (Long i Toppino, 2004). S 

druge strane, ispitanici izvještavaju o dužem zadržavanju one interpretacije koja im je poznatija. 

Razlika u dužini zadržavanja jedne interpretacije nestaje ako se podražaj zarotira za 180 

(Peterson, 1994; Peterson i Gibson, 1994; Peterson, Harvey i Weidenbacher, 1991; Vecera i 

Farah, 1997). Ova istraživanja upućuju na zaključak da prepoznavanje objekta, odnosno 

prethodno znanje može direktno usmjeravati proces razdvajanje lika od pozadine koji se smatra 

dijelom ranog vida. Buduća istraživanja moraju razjasniti je li i ovaj efekt zapravo posredovan 

usmjeravanjem spacijalne pažnje ili predstavlja dokaz za kognitivnu penetrabilnost vida.  

 

5.6. Pamćenje i Prepoznavanje  

 

U mnogim se istraživanjima efekt kognitivne penetracije miješa s prepoznavanjem 

podražaja. Npr. pridjeljivanje jezičnih oznaka jednostavnim oblicima ubrzava vrijeme vidne 

pretrage i drugih zadataka prepoznavanja. Međutim, prepoznavanje osim vidnog procesiranja 

uključuje i pamćenje kako bi se dani vidni podražaj usporedio sa zapamćenom reprezentacijom. 

Budući da vidno prepoznavanje uključuje i percepciju i pamćenje, preporuka za buduća 

istraživanja je razlikovati ova dva procesa (jer efekti pamćenja nemaju implikacije za prirodu 

percepcije) ukoliko želimo govoriti o efektima kognitivne penetracije u vid (Firestone i Scholl, 

2016). 
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Gantman i Van Bavel (2014) su ispitivali efekt vidnog iskakanja moralno važnih riječi 

(engl. moral pop-out). Ispitanicima su tahistoskopski prezentirane smislene i besmislene riječi 

za koje su morali odlučiti u koju od te dvije kategorije pripadaju (zadatak leksičke odluke). 

Neke su riječi bile moralno važne (npr. ilegalan), a neke moralno nevažne (npr. ograničen). 

Rezultati su pokazali da ispitanici točnije identificiraju moralno važne od moralno nevažnih 

riječi. Međutim, moralno važne riječi su bile međusobno semantički povezane. Zbog toga je 

moguće da su moralne riječi stvorile pripremu jedna za drugu i da su se lakše prepoznavale 

zbog olakšanog doziva iz semantičkog pamćenja, a ne zbog utjecaja na vid. Stoga se utjecaj 

semantičke pripreme (engl. priming) ne može smatrati primjerom kognitivne penetrabilnosti 

vida budući da bilo koja kategorija riječi može u sličnim uvjetima biti lakše detektirana. Upravo 

to su demonstrirali Firestone i Scholl (2015) u eksperimentu u kojem su dobili isti efekt, 

odnosno točnije detekcije riječi koristeći kao podražaje riječi povezane s trivijalnom 

arbitrarnom kategorijom kao što je odijevanje. U drugom eksperimentu koristili su riječi 

povezane s prometom i opet su dobili isti efekt. Dobiveni rezultati sugeriraju da je semantička 

povezanost riječi ključan faktor u podlozi efekta kojeg su dobili Gantman i Van Bavel (2014). 

Stoga se može zaključiti da pamćenje, a ne vidna percepcija, poboljšava detekciju riječi 

povezanih s moralom (kao i s bilo kojom drugom kategorijom riječi).  

 

 

6. ZAKLJUČAK 

 

Na osnovu prikazanih teorijskih argumenata kao i empirijskih podataka koji im idu 

prilog može se jedino zaključiti da nije postignut konsenzus o tome postoji li utjecaj kognicije 

i emocija na vid. U teorijskom smislu, važno je razjasniti ulogu silaznog procesiranja i povratnih 

veza u vidnom korteksu. Prediktivno kodiranje i Bayesijanski modeli nisu jedini računalni 

modeli vidne percepcije. Alternativni pristup razumijevanju uloge silaznih procesa pružio je 

Grossberg (2013) u okviru teorije adaptivne rezonance. Grossberg (1999, 2017) je predložio 

hipotezu prema kojoj su svjesna perceptivna stanja rezultat rezonance, odnosno slaganja između 

uzlaznih i silaznih signala. Kada slaganja nema, silazni utjecaji se brišu, odnosno inhibiraju te 

je daljnje procesiranje vođeno isključivo uzlaznim signalima. Iz toga proizlazi da je vid zaštićen 

od kognitivnog utjecaja. Međutim, nije jasno kako bi ova teorija objasnila nalaze koji se navode 

u prilog kognitivnoj penetrabilnosti vida. Stoga su potrebna daljnja istraživanja, posebno 

simulacijske studije, koje bi objasnile na kojem nivou obrade informacija u okviru teorije 

adaptivne rezonance dolazi do djelovanja kognicije i emocija.  
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 U budućim empirijskim istraživanjima potrebno je uvažiti preporuke koje su predložili 

Firestone i Scholl (2016) kako bi se razlučilo stvarno djelovanje kognicije i emocija na vid od 

djelovanja drugih (ometajućih) faktora koji su prisutni u eksperimentu. Zanimljivo je kako lako 

efekti koji se uzimaju kao argument za penetrabilnost vida nestaju kada se sakrije prava svrha 

eksperimentalne manipulacije (Firestone i Scholl, 2017). S druge strane, ostaje otvoreno pitanje 

u kojoj mjeri je uopće moguće razdvojiti vidnu percepciju od interpretacija procjena i prosudbi, 

o čemu postoje podijeljena mišljenja (Durgin, 2017; Schnall, 2017). Nije dovoljno ostati samo 

na teorijskim raspravama o ovoj distinkciji, nego i u eksperimentima osigurati da subjektivne 

procjene ispitanika ne budu kontaminirane prosudbama nakon završenog perceptivnog procesa.  

Na kraju, možemo zaključiti da za sad nema čvrstih argumenata za penetrabilnost vida 

budući da se gotovo svi bihevioralni nalazi koji se uzimaju kao podrška ovoj ideji zapravo mogu 

pripisati ili djelovanju neperceptivnih faktora (prosudba, pamćenje, prepoznavanje i 

usmjeravanje pažnje) ili nedovoljnoj eksperimentalnoj kontroli, što uključuje kontrolu fizičkih 

obilježja podražaja, kao i kontrolu ispitanikovih pretpostavki o pravoj hipotezi istraživanja. 

Stoga ostaje otvoreno istraživačko pitanje može li se kreirati istraživanje u kojem će se 

nedvosmisleno izolirati izravni utjecaj kognicije i/ili emocija na vid. 
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ABSTRACT 

 

 

The memory color effect and Spanish castle illusion have been taken as evidence of the 

cognitive penetrability of vision. In the same manner, the successful decoding of color-related 

brain signals in functional neuroimaging studies suggests the retrieval of memory colors 

associated with a perceived gray object. Here, we offer an alternative account of these findings 

based on the design principles of adaptive resonance theory (ART). In ART, conscious 

perception is a consequence of a resonant state. Resonance emerges in a recurrent cortical 

circuit when a bottom-up spatial pattern agrees with the top-down expectation. When they do 

not agree, a special control mechanism is activated that resets the network and clears off 

erroneous expectation, thus allowing the bottom-up activity to always dominate in perception. 

We developed a color ART circuit and evaluated its behavior in computer simulations. The 

model helps to explain how traces of erroneous expectations about incoming color are 

eventually removed from the color perception, although their transient effect may be visible in 

behavioral responses or in brain imaging. Our results suggest that the color ART circuit, as a 

predictive computational system, is almost never penetrable, because it is equipped with 

computational mechanisms designed to constrain the impact of the top-down predictions on 

ongoing perceptual processing.  

 

Keywords: adaptive resonance theory; cognitive impenetrability of vision; color vision; 

memory color effect; predictive coding 
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1. INTRODUCTION 

 

 

A long-standing debate exists about the question of whether cognitive processes such as 

thinking, reasoning, prior knowledge, or expectations can directly alter the content of visual 

perception (Raftopoulos & Zeimbekis, 2015). One perspective is the complete independence of 

vision from cognition on the grounds of the computational role of vision in delivering an 

accurate representation of the external environment (Pylyshyn, 1999; Raftopoulos, 2001, 2009, 

2014). According to this view, vision is an informationally encapsulated module detached from 

other cognitive operations. It is essential to our ability to flawlessly navigate through an 

environment. Therefore, any extraneous influence on the fast, dedicated processes of 

constructing surface representations in space may be deleterious to our behavioral success. In 

accord with this perspective, many empirical findings of cognitive penetrability of vision (CPV) 

may be regarded as instances of insufficient experimental control over relevant factors 

(Firestone & Scholl, 2017). For example, Firestone and Scholl (2014, 2015b, 2015c) showed 

that some of the studies that found evidence for CPV actually confused perception with 

judgment or memory. Other studies failed to provide proper control over low-level stimulus 

features that offer alternative explanation of the observed findings (Firestone & Scholl, 2015a). 

Another methodological shortcoming is that many experiments were run with low statistical 

power. This may lead to a publication bias, that is, to a tendency to overestimate effect sizes 

and potentially to false positive findings regarding CPV (Francis, 2012, 2019; Francis & 

Thunell, 2019). 

An opposing perspective argues for the complementarity of perception and cognition 

based on the idea that cognition supplies contextual information that may disambiguate 

contradictory sensory evidence, or it may fill in missing parts (Goldstone et al., 2015; Lupyan 

2012, 2015a, 2017a, 2017b). A large amount of behavioral and brain data has been accumulated 

over the years suggesting that vision is indeed cognitively penetrable (O'Callaghan et al., 2017; 

Newen & Vetter, 2017; Vetter & Newen, 2014). Such findings fit well within a predictive 

coding framework (Clark, 2013; Hohwy, 2013, 2017). According to this view, the brain 

constantly generates hypotheses about the external world and compares these predictions 

against available sensory data. Predictive coding is usually cast in terms of Bayesian inference, 

whereby prior beliefs in the states of the world are expressed as probabilities that are updated 

in light of new evidence according to Bayes’ formula. The related formulation is a free energy 
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principle, which quantifies the degree of surprise arising from the mismatch between 

expectations and bottom-up input (Friston, 2010).  

At the neural level, feedback projections are a prominent feature of the visual cortex; 

they are found at all stages in the visual cortical hierarchy (Ahissar & Hochstein, 2004; Gilbert 

& Li, 2013; Hochstein & Ahissar, 2002). Feedback connections may communicate predictions 

about what is likely to occur in the environment and where it might occur (Summerfield & de 

Lange, 2014; Summerfield & Egner, 2009, 2014). If feedback connections share the same 

features with feedforward connections, and if they have the same effect on the target cortical 

area, then it is reasonable to conclude that vision as a predictive system is a penetrable system 

(Lupyan, 2015a). In contrast, there is evidence to suggest that the nature of feedback processing 

is quite distinct from feedforward processing because feedback modulates neural activity rather 

than drives it (Macknik & Martinez-Conde, 2009). In addition, feedback pathways may be 

anatomically segregated from feedforward pathways (Markov et al., 2013, 2014; Markov & 

Kennedy, 2013) and may utilize different communication channels (Bastos et al., 2015; 

Michalareas et al., 2016). 

In line with previous discussions, Macpherson (2017) has argued that, in principle, it is 

possible to dissociate predictions from penetrability. However, she has not offered specific 

examples of how this dissociation might occur in neural processing. In this work, we attempt 

to fill this gap by demonstrating that a well-developed alternative theoretical framework exists 

that deals with predictions and top-down expectations in a different way relative to predictive 

coding models discussed by Clark (2013) and Hohwy (2013, 2017). This is adaptive resonance 

theory (ART), which was proposed by Grossberg and colleagues and developed over several 

decades. The ART is a general theory of cortical information processing designed to solve the 

question of how the brain achieves stable learning and memory in a constantly changing 

environment (Carpenter & Grossberg, 2003; Grossberg, 2003, 2013). It has been successfully 

applied in the modeling and understanding of behavioral and neural data about category 

learning, memory, expectation, perception, attention, and consciousness. Here, we argue that 

the computational mechanisms of the ART imply that vision is not cognitively penetrable. We 

attempt to demonstrate how behavioral and functional neuroimaging data, which have been 

taken as evidence of CPV, can be reinterpreted as a manifestation of the operation of ART 

processing components. This analysis leads to the opposite conclusion; that is, vision is not 

cognitively penetrable. 
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2. BEHAVIORAL AND NEURAL DATA SUPPORTING COGNITIVE 

PENETRABILITY OF COLOR VISION 

 

A vast amount of empirical studies accumulated over the last decades have reported 

evidence for CPV (reviewed in Firestone and Scholl, 2017). To make the argument clear, we 

restrict our attention to the well-studied domain of color perception. First, we review major 

behavioral and neuroimaging findings supporting CPV. Delk and Fillenbaum (1965) were 

among the first to report that object recognition systematically biased color perception. They 

have found that a red–orange heart appears redder than it actually is. In a similar fashion, 

Goldstone (1995) has found that the categorization of simple objects into letters and numerals 

biased perception of their color. During training, letters were arbitrarily associated with red 

hues, and numerals were associated with violet hues. In the test phase, the letter L and the 

numeral 8 were presented in the same hue, which was midway between red and violet. Results 

have shown that participants judged L to be redder and numeral 8 to be more violet than they 

really were, thus pointing to an effect of an abstract stimulus category (letters vs. numerals) on 

color perception. 

When participants were asked to adjust the color of natural or artificial objects to neutral 

gray, their responses to objects with intrinsic colors were biased towards complementary colors 

(Hansen et al., 2006; Olkkonen et al., 2008; Witzel, 2016; Witzel et al., 2011). This is known 

as a memory color effect. It arises because an object with an intrinsic or a diagnostic color 

creates a weak color impression consistent with the object’s typical color retrieved from 

memory. For example, a banana induces a perception of yellow, and this mnemonic effect 

biases observers to offset their response toward yellow’s complementary color, namely blue. 

The most compelling evidence of the cognitive penetrability of color perception was recently 

provided by Lupyan (2015b), who has reported that adapting to objects with intrinsic colors 

(tomato) creates stronger afterimages (more vivid colors) than adapting to arbitrarily colored 

objects (car). In addition, stronger afterimages were created by scenes containing intrinsically 

colored elements (sky) than scenes with arbitrarily colored objects (book). A particularly 

striking demonstration of this effect occurring in natural images is known as the Spanish castle 

illusion, which is discussed in depth below. It should also be noted that a recent study failed to 

find evidence for cognitive penetrability of color perception (Valenti & Firestone, 2019). 

Participants were asked to identify an object with an odd color in a set of three objects. 

Interestingly, their judgments were not affected by the objects’ shape. 
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There is also neuroimaging evidence of top-down effects on color vision. Taking 

advantage of the fact that the Greek language has two color terms distinguishing between light 

and dark blue, Thierry et al. (2009) have found that Greek speakers exhibited greater neural 

response, as measured by event-related potential (ERP) waveforms, when discriminating 

between light and dark blue relative to discrimination between light and dark green. The 

difference was observed in the visual mismatch negativity (vMMN) and in the P1 waveform, 

suggesting that language labels affect early or pre-attentive color perception. No such difference 

between blue and green was observed in English speakers. In addition, it was found that the 

strength of the vMMN signal observed in Greek participants correlated negatively with the 

length of their stay in the United Kingdom (Athanasopoulos et al., 2010). However, two 

subsequent studies using artificial color labels have failed to find a difference between the early 

ERP components within categories (Clifford et al., 2012; He et al., 2014).  

Forder et al. (2017) have recently found language-related modulation of P1 but not 

vMMN. The P1 waveform reflects the activation of more than 30 distinct extra-striate visual 

areas, and it is likely to include the activation of V4 and the posterior inferotemporal (PIT) 

cortex (Luck, 2014). However, under closer examination, it appears that the effect observed by 

Forder et al. (2017) is rather weak, occurring in a narrow temporal window of only 10 ms. 

Authors have noted that when they increased the temporal window, the effect of language 

disappeared. It seems that they employed an analysis strategy that increases the chance of false 

positive findings (Luck & Gaspelin, 2017). It would be more convincing to demonstrate that 

the same effect appears in different temporal windows, which would imply that the effect does 

not depend on arbitrary decisions about the location of a measurement window (Bacigalupo & 

Luck, 2015). Moreover, grand-averaged waveforms in Forder et al. (2017) showed that the 

wave modulations in experimental conditions occurring before the stimulus presentation were 

of a similar size to the modulations observed in the post-stimulus period. This points to the 

presence of a high level of noise in the data, which makes drawing any conclusion unwarranted 

(Woodman, 2010). Taken together, these considerations suggest that no convincing evidence 

exists for the language-related modulation of early components of ERP in response to color 

stimuli. In contrast, there is much more robust evidence of the modulation of late components 

such as P2 and P3, which are thought to reflect late post-perceptual processes (Clifford et al., 

2012; He et al., 2014).  

Apart from the ERP evidence of CPV, which is equivocal, two studies using functional 

magnetic resonance imaging (fMRI) have reported that it is possible to decode brain signals 

evoked by color-selective cortical areas during the perception of achromatic objects with 
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diagnostic colors, such as a banana or tomato (Vandenbroucke et al., 2016). This suggests that 

observers really see a typical color (yellow) while they observe a gray banana because object 

knowledge penetrates the cortical area V4, which is known to be involved in color perception 

(Brouwer & Heeger, 2009, 2013). On the other hand, Bannert and Bartels (2013) utilized more 

complex pictures and have found that it is possible to decode color signals in V1 but not in V4. 

They have argued that V1 reads out expectations about an object’s typical color. 

 The reviewed findings seem to support the conclusion that color vision is cognitively 

penetrable (Macpherson, 2012). Deroy (2013) has further proposed that cognitive influences on 

color vision are restricted to prior knowledge about an object. This is mediated by multi-modal 

representation that integrates an object’s color with its shape, texture, and other attributes. In 

contrast, Zeimbekis (2013) has argued that the memory color effect arises from a judgment bias 

in a task that does not constrain strategies that participants may employ when they make color 

adjustments. Based on his analysis of the tasks and stimulus conditions used in reviewed 

studies, Zeimbekis (2013) has concluded that there is no compelling reason to admit CPV. In 

this paper, we show that it is possible to observe a memory color effect or a Spanish castle 

illusion within a computational architecture designed to protect perception from cognitive 

influences. We suggest that such effects arise from a temporary disruption of ongoing color 

processing. In the next four sections, we provide an overview of the general computational 

principles on which ART is based and its specific instantiation designed to model color 

perception. 

 

 

3. ADAPTIVE RESONANCE THEORY 

 

ART was proposed as a solution to the problem of instability of learning and memory 

in a non-stationary environment. The problem concerns how a neural network learns new 

recognition codes without eroding already established codes. This is known as a stability–

plasticity dilemma (Grossberg, 1980, 2013). It has long been realized that learning algorithms, 

such as error back-propagation, suffer from catastrophic forgetting when faced with new inputs 

that fell outside of the domain on which the network was initially trained (French, 1999; 

McCloskey & Cohen, 1989). For example, the network might be trained on a task to 

discriminate between various types of birds. However, if the task is suddenly switched to 

distinguishing flowers, the network will eventually forget its acquired knowledge about the 

birds. Furthermore, error back-propagation typically requires thousands of repetitions of the 



 

238 

 

same patterns to learn the appropriate categories. On the other hand, human learning may occur 

in a single exposure and may persist throughout life. Interestingly, the same learning problems 

identified in error-backpropagation persist even in state-of-the-art deep neural networks, and 

several remedies have been put forward to overcome them (Kirkpatrick et al., 2017; Pfülb et 

al., 2018; Velez & Clune, 2017; Waldrop, 2019).  

 According to Grossberg (1980), the solution to the problem of catastrophic forgetting is 

to endow a neural network with the capability of discriminating between new and old patterns. 

This is achieved by dividing the network into two subsystems: attentional and orienting. An 

attentional subsystem is dedicated to processing familiar patterns. It compares sensory (bottom-

up) data with learned (top-down) expectations; if the input pattern matches with one of the 

previously learned codes (categories), then it is recognized as a familiar item, and resonance 

develops between the sensory pattern and the chosen category. On the other hand, if a 

sufficiently large mismatch occurs between the input pattern and the learned code, then an 

orienting subsystem is activated. It produces a reset signal that inhibits the currently active node 

in the attentional subsystem and initiates a search for another learned code that may match with 

the input. If no learned code is available that is sufficiently similar to the input pattern, then 

new neural tissue is committed to learn the presented pattern and to establish a new category. 

Therefore, the previously learned codes are protected from erosion by novelty detection – those 

codes will not be erased in the presence of the new patterns; rather, new neural tissue is 

committed to encode them. Here, we suggest that the same mechanism of novelty detection that 

is needed to achieve stable learning is also responsible for protecting perception from top-down 

influences. In other words, the cognitive impenetrability of visual perception is a natural 

consequence of the brain mechanisms that are designed to prevent interference between new 

inputs and old memories. 

Computational implementation of the ART circuit consists of three hierarchically 

organized layers labeled as F0, F1, and F2 (Fig. 1). First, the F0 layer represents a purely sensory 

response that is not affected by expectations. In some descriptions of the ART circuit, this layer 

is left out as a less important component. However, its output enters into the computation of a 

match in the orienting subsystem. Furthermore, it has properties that are relevant for the current 

discussion. In particular, the F0 layer should not receive feedback from higher-level centers in 

the hierarchy. For this reason, we explicitly included it in the description of the ART circuit. 

Second, the F1 layer serves as a matching point between bottom-up input arriving from the F0 

layer and top-down signals arriving from the F2 layer. Third, at the top of the hierarchy, the F2 

layer represents categories or feature groupings. This layer is a winner-takes-all (WTA) 
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network that enhances the activity of the node receiving maximal input and inhibits all other 

nodes receiving less support. Each F2 node is specifically tuned to one spatial pattern registered 

in the F1 layer. 

 

 

Figure 1. Canonical ART circuit with parallel attentional and orienting subsystem. The attentional 

subsystem consists of three neural layers labeled as F0, F1, and F2. In addition, gain control prevents 

the suprathreshold activation of F1 in the absence of bottom-up input in F0. In the orienting 

subsystem, an inhibitory reset signal is released toward F2 when a mismatch is detected between the 

bottom-up input and top-down learned expectation. 

 

The input pattern is processed in two sweeps through an ART hierarchy. First is a 

feedforward sweep involving a traversal of activity from F0 via F1 to F2. It ends with the 

selection of a candidate F2 node representing the best guess regarding the category to which a 

given input belongs. The second sweep is a feedback sweep starting from the winning F2 node 

that generates feedback activation to F1. When feedback arrives at the F1 layer, its nodes 

compute the intersection between two sources of activation, that is, the activity pattern arriving 

from F0 and the learned top-down expectations arriving via feedback projections from F2. If 
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top-down synaptic weights closely match with the bottom-up pattern, then the total activity in 

the F1 layer should be close to the total activity in the F0 layer. In this case, the orienting 

subsystem remains silent, and mutual excitation between F1 and F2 results with resonance. On 

the other hand, if top-down weights in the feedback pathway from F2 to F1 are dissimilar to the 

input pattern in F0, then the total activity in the F1 layer will be lower than that in F0. Now, the 

difference in total activity between F0 and F1 is sufficiently large to trigger activation of the 

orienting subsystem. The orienting subsystem releases the reset signal to the F2 layer. In this 

way, the orienting subsystem selectively inhibits the currently active F2 node and initiates the 

search for another F2 node that might better capture the properties of the input pattern. If such 

an F2 node is not found among the ones that are already committed to coding different 

categories, then an uncommitted F2 node is recruited to learn a new pattern and to form a new 

category representation (Carpenter & Grossberg, 1987, 2003).  

With respect to the discussion about CPV, it should be emphasized that it is possible to 

excite the F2 layer even before it receives feedforward input from F1. Such feedback signals 

may arise from the processing stages located above F2 in a hierarchy. One such source of 

excitation is an inter-ART associative map that connects outputs from different ART circuits. 

An excited F2 node leads to the activation of the feedback pathway from F2 to F1. However, 

inhibitory gain control prevents suprathreshold activation of F1 in the absence of bottom-up 

input from F0. It assures that feedback influences on F1 are only subthreshold or modulatory. 

Feedback from F2 prepares or sensitizes the F1 nodes to respond faster and more vigorously to 

the bottom-up input from F0. This preparatory role of feedback is called attentional priming 

because the F2 node focuses attention on a specific feature combination that is expected to occur 

in the upcoming stimulus (Carpenter & Grossberg, 1987, 2003). The gain control mechanism 

is essential for the proper functioning of the ART circuit because it prevents hallucinations from 

occurring (Grossberg, 2000). Without gain control, the F2 → F1 feedback pathway may generate 

suprathreshold activity in F1 even when there is no bottom-up input.  

To understand why the ART circuit generates impenetrable percepts, it should be 

emphasized that the ART is an attractor network. Temporal evolution of its activity can be 

described as moving through a state (or phase) space toward a stable equilibrium point or 

attractor. An attractor represents a content-addressable memory to which the network activity 

is drawn. An important property of the attractor is that it is a low-energy state of the system. In 

other words, an attractor does not allow the network activity to leave it once the attractor is 

reached (Haykin, 2009, Chapter 13). This means that the network activity is resistant to external 

perturbations. Such network behavior is known as a hysteresis. In the ART circuit, hysteresis 



 

241 

 

is a system-level consequence of the strong excitatory loop formed between F1 and F2 

(Grossberg, 1980). It is interesting to note that there is evidence of hysteretic effects in visual 

perception where decisions about an ambiguous, changing stimulus often exhibit the influence 

of recent visual experiences. For example, hysteresis has been observed in studies of stereopsis 

(Julesz, 1974), binocular rivalry (Buckthought et al., 2009), motion perception (Williams & 

Sekuler, 1986), and the identification of line drawings (You et al., 2011), as well as in the 

dynamic perception of objects and scenes (Poltoratski & Tong, 2014). 

Hysteresis is also a reason why a network with strong excitatory loops requires an 

external reset in the first place (Francis et al., 1994). In the ART circuit, each attractor 

corresponds to the activation of a single F2 node. The only way to push the ART circuit from 

one attractor to the next is by the inhibitory reset signal that arrives from the orienting 

subsystem. Furthermore, when the ART circuit is already in one of its resonant states, the only 

way to activate the orienting subsystem and to push the network from the current attractor to 

the next one is to change the bottom-up input. On the other hand, top-down signals have no 

access to the orienting subsystem and cannot influence the ART circuit in the same way as 

bottom-up inputs. This asymmetry between bottom-up and top-down signals in guiding 

information processing within the ART circuit is essential to understand how cognition 

influences perception in general (Domijan & Šetić, 2016).  

 

 

4. ADAPTIVE RESONANCE THEORY, COLOR PERCEPTION AND 

CONSCIOUSNESS 

 

According to Grossberg (1999, 2017b), all conscious states are resonant states. We 

claim that, as a corollary to this proposition, cognition almost never penetrates conscious visual 

perception. In other words, cognitive impenetrability is a generic property of the ART circuit. 

Top-down signals carrying predictions can influence only early stages of processing in the ART 

circuit before resonance occurs. After resonance is established, no further cognitive influences 

are possible because the resonant state is an attractor state where top-down expectations agree 

or match with bottom-up input. This attractor represents the conscious experience of a familiar 

input pattern. In the ART circuit, resonance is possible only when there is not much prediction 

error. In contrast, the predictive coding model suggests a lack of activity in the visual cortex in 

this case because there is nothing to communicate to higher levels in the hierarchy (Clark, 2013; 

Hohwy, 2013, 2017).  
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The same reasoning as above can be applied in understanding how a basic visual 

experience, such as color qualia, emerges from the interactions within the ART circuit. We 

suggest that the conscious experience of color arises from the resonance established between 

the color category (hue) encoded in F2 and the specific pattern of color-opponent activation 

registered in F0. The implication of this proposal is that color perception is a discrete event 

because the ART circuit always chooses one winner among many competitors in the F2 layer. 

Only the winning F2 node is in a position to establish a resonant state. This is consistent with 

studies demonstrating the quantal (all-or-none) nature of conscious visual experiences (Asplund 

et al., 2014; Sergent & Dehaene, 2004; Vul et al., 2009). 

To make the argument clear, suppose that a red strawberry is presented as an input 

image. We will create an expectation to see a red color in the F2 layer because we recognize the 

shape of the strawberry, since we have already had an experience with red strawberries in the 

past. Such an expectation matches well with the bottom-up activation of feature detectors 

dedicated to the red color in the F1 layer. The match between expectation and sensory evidence 

leads to a resonant state corresponding to a subjective experience of seeing a red color on the 

strawberry. On the other hand, if a green strawberry is presented instead, we will not perceive 

a mixture of red and green, as the predictive coding model would suggest. Rather, the ART 

circuit will detect a mismatch between expectation (red) and bottom-up input (green). Such a 

mismatch would activate an orienting subsystem, which delivers a reset signal to the currently 

active category node in the F2 layer corresponding to the red color and clears the traces of 

erroneous expectations. We will consequently perceive the green color, after the reset signal 

clears the erroneous expectation of a red color and initiates a search to find the most appropriate 

category representation for the given input. Again, we emphasize that the dynamics of the ART 

circuit is guided by the bottom-up patterns. The orienting subsystem ensures that a disconfirmed 

prediction does not take any part in the perceptual experience. 

The following question then arises: Why then are there so many behavioral and 

neuroimaging findings pointing in the opposite direction? We suggest that behavioral and 

neural data supporting CPV actually capture transients of neural activity occurring during the 

processing of erroneous expectations. We emphasize that ART mechanisms require some time 

to complete. This is especially true in the case of a mismatch where the sequence of events 

needs to occur before the ART circuit settles into an attractor corresponding to the best match 

between bottom-up and top-down signals – that is, to conscious color perception. These events 

include computation of a match in the F1 layer, activation of the orienting subsystem, and 

inhibition of the F2 layer. If the ART circuit is probed to respond before completion of its search 



 

243 

 

cycle, then it will respond with the color category that is currently activated in the F2 layer. In 

the early stage of processing, when the (mis)match is still computed in the F1 layer, the activity 

in the F2 layer is determined by the top-down expectations. Therefore, the circuit response will 

reflect expectation rather than perception. However, this does not mean that visual perception 

is penetrable. Rather, it reveals the operations of a neural circuit that struggles to achieve the 

best possible consistency with bottom-up input.  

 The description of a perception as a resonant state aligns with other approaches to visual 

consciousness that emphasize the role of feedback projections from a higher- to a lower-level 

area in the hierarchy. However, in contrast to models postulating that feedback from the extra-

striate to the striate cortex is a neural correlate of consciousness (Escobar, 2013; Lamme, 2001, 

2003), the ART circuit can be situated within the extra-striate cortex itself, as illustrated below. 

Several authors have pointed out that V1 and feedback to it do not directly contribute to 

conscious vision (Ffytche & Zeki, 2011; Koch et al., 2016; Leopold, 2012; Silvanto, 2015), 

although not all authors agree on this point (Lamme, 2018; Pascual-Leone & Walsh, 2001; 

Tong, 2003). In addition, the ART circuit goes beyond other feedback models because it 

explicates how top-down feedback signals interact with bottom-up inputs. Establishing a 

resonant state requires computation of the amount of agreement between bottom-up and top-

down stimulation; it is not sufficient to simply blend bottom-up and top-down signals into an 

indistinguishable mixture. 

 

 

5. VIGILANCE AND THE DEGREE OF MATCH 

 

The ART circuit allows for flexible control of the degree of match between bottom-up 

and top-down signals that are needed to achieve resonance. Degree of match is controlled by 

the vigilance parameter. Vigilance might be conceived as a threshold that controls activation of 

the orienting subsystem. If vigilance is set to a high value, then the ART circuit will encode 

specific exemplars, whereas if it is set to a lower value, then it will capture more global, average 

feature groupings. Low vigilance would lead to a more global representation of a category that 

captures feature averages, that is, prototypes. Here, we argue that learning basic visual feature 

such as color requires an ART circuit with vigilance set to a high value. In this way, it is possible 

to encode and discriminate among a significant number of hues encountered in the environment. 

In other words, we suggest that each discernible color requires its own separate F2 node akin to 

a color grandmother cell (Bowers, 2009, 2017). 
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It might be argued that the number of F2 units needed to encode all possible hues far 

exceeds cortical capacity because it is estimated that a human observer can distinguish among 

2.3 million hues. However, when luminance variations are excluded, such an estimate reduces 

to approximately 26,000 discernible hues (Linhares et al., 2008). As a counterargument, it is 

possible to envision a kind of combinatorial coding where three separate color ART circuits 

encode red–green, blue–yellow, and black–white dimensions of the same input. They may 

operate in parallel as a grandmother cohort that jointly creates an experience of hue (Grossberg, 

2017a). For example, in response to the same cone input, one F2 node should be activated in 

the red-green circuit to represent the amount of redness or greenness, while one F2 node should 

be activated in the blue–yellow circuit to represent the amount of blueness or yellowness, and 

finally one F2 node should be activated in the black–white circuit to represent the brightness of 

the input. In this way, demand on the number of required nodes in the F2 layer is greatly reduced. 

It would be sufficient to encode approximately 160 color categories in the red–green and blue–

yellow circuits to account for the estimated 26,000 distinct hues. Moreover, 100 additional 

brightness categories, ranging from pure black via different shades of gray to pure white, might 

account for a full range of color coding. In total, less than 500 F2 nodes are sufficient to support 

fully functional color vision. It is estimated that approximately 10,000 neurons are present 

within 1 mm3 of cortical volume, of which three quarters are excitatory (Olman, 2015). 

Therefore, the complete color F2 layer (with red–green, blue–yellow, and black–white 

components) may easily fit within one cortical glob whose size is estimated to be about 1 mm 

(Conway et al., 2007; Conway & Tsao, 2009). Moreover, there is sufficient neural space within 

one glob to place multiple complete sets of color ART circuits that cover partially overlapping 

areas of the central visual field. In this way, it is possible to account for the perception of 

ensemble colors (Chetverikov et al., 2017; Kuriki, 2004; Maule & Franklin, 2015, 2016). 

We speculate that such highly specific learning occurs early in life when basic color 

categories become firmly established. This does not preclude the possibility of learning new 

hues later in life when environmental pressures require one to do so. Furthermore, observers 

may have a different amount of experience with the range of colors and may experience them 

in different orders. This may account for idiosyncrasies and individual differences in color 

appearance and color categorization (Emery et al., 2017a, 2017b). Learning in the ART circuit 

takes place by adjusting the synaptic weights in the bottom-up and top-down pathways in 

response to continuous-valued, color-opponent inputs. The way in which to set up weights is 

prescribed by algorithms such as fuzzy ART (Carpenter et al., 1991), Gaussian ART 

(Williamson, 1996), distributed ART (Carpenter et al., 1998), or some other variants and 
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improvements described in literature (Baraldi & Alpaydin, 2002a, 2002b; Masuyama et al., 

2018; Vigdor & Lerner, 2007). 

 

 

6. MODEL DESCRIPTION 

 

To address the issue of how prior knowledge may affect color perception, we follow the 

same approach previously employed in simulating the neural substrate of symbol grounding 

(Domijan & Šetić, 2016). We will assume that separate ART circuits exist that are specialized 

for the processing of color and form. Parallel processing circuits reflect the division of labor 

between color-selective and form-selective neurons found in the ventral visual stream (Lennie, 

1998). The model components and their interactions are depicted in Figure 2. Mathematical 

description of the model is provided in the Appendix. The shape ART circuit and inter-ART 

associative map were not explicitly modeled. They are included in the model description in 

order to explain how feedback signals to the color ART circuit are generated. 

 

 

Figure 2. A model of the interaction between parallel color-selective and shape-selective ART 

circuits. 
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6.1. Shape Adaptive Resonance Theory Circuit 

 

The shape ART circuit learns to recognize distinct shape configurations occurring in the 

environment. The F0 and F1 layers of the shape ART circuit consists of various boundary 

detectors tuned to properties such as boundary orientations, sizes, terminations, corners, circles, 

and similar features that are typically found in the form-selective areas of V4 (Pasupathy & 

Connor, 1999, 2001). The F2 layer consists of nodes encoding object categories. The shape 

ART circuit thus transforms the output of boundary-selective nodes into a representation of 

integrated shape categories. As in the color ART circuit, in the shape ART circuit, the F2 layer 

resides in the PIT where neurons selective to complex shape configurations are found (Brincat 

& Connor, 2004, 2006). Furthermore, input to the shape ART circuit is subject to attentional 

modulations in order to achieve positionally invariant object recognition.  

 

6.2. Inter-ART Associative Map 

 

Next, we need to explain how object recognition in the shape ART circuit may influence 

color perception in the color ART circuit. We suggest that the F2 layers of both ART circuits 

are mutually connected via the inter-ART associative map (Fig. 2). It establishes the 

connections between winning nodes in two ART circuits via Hebbian learning and thus 

multiplexing information about color and form. Such combined selectivity to color and form 

has been observed in the anterior inferotemporal (AIT) cortex (Chang et al., 2017; Lafer-Sousa 

& Conway, 2013).  

Following O’Callaghan et al. (2017), we suggest that the shape ART module responds 

faster to the same input pattern than the color ART circuit. This is because shape-selective 

neurons receive predominantly fast magnocellular input, while color-selective neurons receive 

predominantly slow parvocellular input. Temporal asymmetry between form and color creates 

a lag in their encoding in V4. On the one hand, fast processing in the shape pathway agrees with 

behavioral and neural evidence that object recognition is a rapid process occurring within 150 

ms of stimulus presentation (Kirchner & Thorpe, 2006; Thorpe et al., 1996; VanRullen & 

Thorpe, 2001). On the other hand, surface color may require a slow process of activity spreading 

or neural filling-in to complete a surface interior (Komatsu, 2006).  

Figure 3 illustrates the cortical pathway that enables object knowledge to influence color 

perception. Fast activation of the shape ART circuit in a response to a familiar shape further 

activates the inter-ART associative map even before the color ART receives its own bottom-up 



 

247 

 

input. Then, the inter-ART associative map sends feedback signals to the F2 layer of the color 

ART circuit. In other words, it reads out the expectation about color that will be seen soon 

because of prior experience with the presented object. This will occur if a typical or diagnostic 

object’s color exists. In addition, the inter-ART associative map may receive projections from 

the orbitofrontal cortex, which integrates more general knowledge about an object arriving from 

different modalities, including vision, audition, and emotion (O’Callaghan et al., 2017). 

 

 

Figure 3. Cortical pathways that may generate feedback signals to the color ART circuit even before it 

receives bottom-up input. 

 

6.3. Color Pre-processing 

 

This model stage encompasses computational mechanisms that take place in front of the 

color ART circuit (Fig. 4). The goal of this stage is to provide a simplified explanation of how 

opponent interactions between parallel cone pathways in the retina, LGN and V1 generates the 

activity of the F0 layer. To simplify the model, we focus on the red–green opponency only. The 

F0 nodes encode the relative activation of the L- and M-cone via the center-surround 

mechanism. The simplest way in which to achieve this is to compute the difference between 

them (L-M and M-L). However, we assume that the F0 layer computes the ratio between the 

activation of the single cone and the total cone output as in L/(L+M) or M/(L+M). This is 
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achieved by divisive inhibition provided by a common inhibitory interneuron. The advantage 

of computing a ratio is that it allows F0 nodes to detach chromatic information from the 

luminance and thus to discount the incidental variations in illumination and to achieve color 

constancy (Foster, 2011; Hurlbert, 1996; Smithson, 2005). Discounted luminance information 

may be encoded in a separate parallel pathway (Hansen & Gegenfurtner, 2009; Lim et al., 2009; 

Xiao et al., 2003). Another advantage of computing ratio is that it normalizes the activity of F0 

nodes. In addition, early stages of color processing may involve surface filling-in to bind color 

signals with an object surface (Hong & Tong, 2017; Sasaki & Watanabe, 2004; Seymour et al., 

2016). Here, we did not incorporate filling-in because we restrict the model to a single L- and 

M-cone pathway without tying them to a specific retinal location. 

 

 

Figure 4. Gated dipole circuit in cone-opponent pathways. Excitatory connections exist within the same 

cone pathway, and inhibitory connections exist between pathways. In addition, excitatory and inhibitory 

connections are endowed with transmitter gates (open rectangles) that adapt and suppress channel 

output in response to prolonged stimulation.  

 

To account for the Spanish castle illusion, we need an additional processing component 

that is capable of generating afterimages. One such component is transmitter habituation or 

synaptic depression. It refers to a reduction in the amount of available transmitter in response 

to sustained stimulation of presynaptic sites. Transmitter habituation occurs because transmitter 

is released at a higher rate than it is possible to synthesize it in presynaptic buttons. A 
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consequence of this process is that a habituated synapse cannot faithfully transmit signal 

amplitude to the postsynaptic site. When embedded into a competitive circuit with two 

opponent pathways, which is called gated dipole, transmitter habituation acts as a gate that 

shifts the competitive balance toward the unhabituated pathway. The gated dipole was designed 

to explain overshoots and undershoots in neural activity that occur in response to stimulus 

presentation and withdrawal, respectively (Grossberg, 1980). Also, it helps to explain how 

afterimages arise in response to prolonged adaptation to color or orientation (Francis, 2010; 

Francis & Ericson, 2004; Grossberg et al., 2002). In contrast to previous descriptions of the 

gated dipole circuit, in the current implementation, there is just one inhibitory interneuron 

receiving excitation from both pathways. In addition, the inhibitory interneuron utilizes divisive 

instead of subtractive inhibition.  

 

6.4. Color Adaptive Resonance Theory Circuit 

 

The color ART circuit displayed in Figure 5 is based on the real-time implementation 

of the fuzzy ART algorithm (Carpenter et al., 1991) described in the Appendix. In the color 

ART circuit, the input (F0) and the matching layer (F1) consist of cone-specific nodes. The pre-

processing that leads to the activation of F0 layer is described in the previous section. The F1 

layer computes a fuzzy intersection between the bottom-up input from the F0 layer and read out 

of top-down adaptive weights arriving from the F2 layer. In contrast to F0 and F1, the F2 layer 

consists of nodes encoding color categories. The F2 layer is modeled as a WTA network that 

chooses one candidate node receiving the strongest bottom-up support to represent an input 

pattern. The F2 nodes are called hue cells because they selectively respond to the pattern of 

activation occurring across the F1 nodes. For example, the F2 node tuned to the pure red color 

will respond to the F1 pattern consisting of a strong activation of the L-cone and a weak 

activation of the M-cone. In contrast, the F2 node tuned to the pure green color will respond to 

the pattern consisting of minimal activation of the L-cone and maximal activation of the M-

cone. By the same scheme, all other hue nodes in the range between red and green will be tuned 

to the particular proportion of the activations of the L- and M- cone.  

In this way, the F2 layer performs the transformation of the linear response of cone-

opponent input found in V1 into a nonlinear color-tuned response found in the globs regions of 

the PIT (Bohon et al., 2016; Conway, 2009; Conway et al., 2007; Conway & Tsao, 2009; Zaidi 

et al., 2014). Globs encode a full hue map because their maximal response shifts systematically 

across the cortical surface as a function of hue shifts on a color circle. There is also evidence 
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that color-tuned cells exist in V4 and that they cover the complete perceptual color space 

involving a full set of variations across hue, saturation, and lightness (Li et al., 2014). In 

addition, functional neuroimaging during execution of color tasks revealed categorical 

clustering of color representation in V4, as would be expected from the color-tuned cells 

(Brouwer & Heeger, 2009, 2013). 

 

 

Figure 5. Color ART circuit, which transforms linear, color-opponent signals registered in F0  and F1 

into non-linear, color-tuned responses in F2 where each node encodes a specific hue (denoted by the 

circle’s hue). 

 

Description of the F2 layer as a WTA network departs from some versions of the ART 

circuit, such as distributed ART (Carpenter et al., 1998) or Gaussian ART (Williamson, 1996), 

where multiple winners are allowed. The distributed ART algorithm was designed to solve the 

problem of category proliferation and to achieve maximal code compression. On the other hand, 

the fuzzy ART with high vigilance tends to treat each input pattern as a separate category. In 

the limit, the fuzzy ART will create as many category representations as there are distinct inputs. 

Consistent with this observation, many psychological models of category learning assume that 

each stimulus (exemplar of a category) encountered during learning is stored in long-term 

memory as a separate item (Estes, 1986, 1994; Lamberts, 2000; Medin & Schaffer, 1978; 

Nosofsky, 1986, 2011). Exemplar models have been successful in accounting for large datasets 

of human categorization performance. Therefore, it might be argued that category proliferation 

observed in the fuzzy ART is not a problem at all. Rather, it suggests that the fuzzy ART might 
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offer an explanation of how exemplars are stored in the brain (Ashby & Rosedahl, 2017). In 

addition, the WTA network forces the F2 layer to create a localist representation, that is, the F2 

nodes behave like grandmother cells. Bowers (2009) argued that localist representations 

provide a better account to many single-unit recording data over distributed representations. He 

concluded that neuroscience data support embedding of the localist representations in theories 

of perception and cognition. These observations led us to choose the fuzzy ART model as a 

psychologically and neurally plausible starting point for the investigation of the interaction 

between perception and cognition. 

 

6.5. Anatomical Considerations About the Color ART Circuit 

 

 We hypothesize that either a complete color ART circuit resides in V4 or it is spanned 

between V4 and PIT, with V4 encompassing the F0 and F1 layers and PIT encompassing the F2 

layer with the representation of color categories. The later interpretation is consistent with the 

hypothesis that V4 supports figure-ground segmentation by selective extraction of features 

belonging to a figure while ignoring its background (Papale et al., 2018; Roe et al., 2012). Its 

position in a visual hierarchy suggests that V4 coordinates signal flow between the early 

retinotopic maps such as V1–V3 and inferotemporal visual areas involved in recognition and 

appearance (Winawer & Witthoft, 2015). Irrespective of the exact anatomical location of the 

color ART circuit, it is not feasible to assume that F0 and F1 reside within V1, because such a 

scheme would require a massive amount of F2 nodes to separately encode color categories at 

each retinotopic position in V1. Moreover, each color would need to be exposed in each retinal 

location to set up the adaptive weights in the feedforward and feedback pathways between F1 

and F2. To avoid such a combinatorial explosion, we assume that color categories are learned 

in a spatially invariant representation with converging input from all V1 locations. To avoid 

mixing of color signals arriving from different locations, spatial attention selectively passes to 

the color ART circuit the color signal arriving from the target surface and filters out all other 

surfaces. The way in which this spatial selection might work is explained below in section 8.1. 

Adaptive resonance theory and attention. Such a scheme implies that we can consciously access 

only a small subset of available colors at any instance of time. Several empirical studies have 

confirmed that access to feature values is indeed severely limited (Duncan, 1980a, 1980b; 

Huang & Pashler, 2007; Huang et al., 2007). The idea of a limited conscious experience of color 

agrees with the hypothesis that consciousness arises in intermediate stages of perceptual 
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processing when we pay attention to a portion of a visual space (Prinz, 2000) and with the claim 

that visual awareness is rather sparse (Ostergaard, 2018; Ward, 2018). 

 In contrast to the above conclusion, several studies suggest that observers are able to 

discern more detailed color information such as the average hue in an array of colored objects 

(Kuriki, 2004; Maule & Franklin, 2015, 2016). A visual system may even represent the actual 

shape (uniform or Gaussian) of the distribution of colors in the environment (Chetvertikov et 

al., 2017). Such an ability to perceive an ensemble of color statistics points to a more detailed 

phenomenal experience of color than it is possible to verbally report (Block, 2011, 2014). In 

the ART circuit, it is possible to accommodate the perception of an average hue by noting that 

spatial attention may be flexibly allocated to a narrow or wide portion of visual space as in a 

zoom-lens model of spatial attention. When spatial attention is narrowly focused on a small 

portion of visual space, the F0 and F1 layers encode color-opponent responses arriving from a 

single surface. However, when attention is more widely distributed, the F0 and F1 layers may 

compute averaged color-opponent responses arriving from multiple surfaces. In this case, the 

F2 response will reflect an average hue rather than the individual hues of any surface in the 

ensemble. In support of this explanation, a recent study has found that summary color statistics 

often go unnoticed (Jackson-Nielsen et al., 2017). 

 

6.6. Color Working Memory Circuit 

 

An important factor that may contribute to the biased reports of color perception in 

behavioral studies is the transfer of the output from the F2 layer to working memory (WM) 

and/or decision-making circuits. Beck and Schneider (2017) have already pointed out that a 

behavioral response of a participant is not a simple one-to-one mapping of subjective perceptual 

experience. Rather, it may be distorted on the way from perception to WM and from WM to 

the response decision. For example, it is conceivable that the output of the ART circuit (activity 

of the F2 layer) is further transferred to the color WM in the AIT and to the prefrontal cortex 

(PFC) where the decision is made regarding the most appropriate response. Here, we assume 

that the color WM contains the identical hue representation as the one found in the color ART 

circuit (Fig. 6). We also assume that, like the F2 layer, the WM circuit is a WTA network; 

therefore, it picks a hue node with a maximal activity level among the inputs it receives from 

the F2. In addition, the input to the WM circuit is passed through a distance-dependent filter in 

order to account for variability and color confusions observed in the color WM (Allred & 

Olkkonen, 2015; Bae et al., 2014).  
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Figure 6. The transfer of color signals from the F2 layer of the color ART circuit to the visual working 

memory. The arrows’ thickness depicts connection strength. 

 

Importantly, the transfer from the color ART to the AIT and PFC may commence even 

before the ART circuit achieves resonance. This claim is consistent with the cascade model of 

information processing in the brain (McClelland, 1979). It suggests that the flow of activation 

in cortical layers proceeds in a continuous fashion from earlier to later stages without a clear 

temporal boundary between them. In the present context, this means that WM and decision-

making circuits may pick out traces of top-down expectations even though the ART circuit 

treats them as erroneous and subsequently removes them from color perception. In other words, 

the ART circuit has the ability to self-correct its activity in accord with sensory evidence, while 

the downstream circuits do not have such a capability. As a consequence, observers’ responses 

may be biased because of top-down expectations despite the fact that our color perception is 

not.  

This type of explanation is relevant to all studies where the experimental setup forced 

participants to compare their actual perception of the currently observed stimulus with the WM 

representation of the previously attended stimulus (Delk & Fillenbaum, 1965; Goldstone, 1995; 

Firestone & Scholl, 2014).  
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7. SIMULATION OF BEHAVIORAL AND NEURAL EVIDENCE OF COGNITIVE 

PENETRABILITY OF COLOR VISION 

 

7.1. Simulation of Stable Self-organization of Hue Categories 

 

To illustrate that the color ART circuit is able to learn hue categories without 

catastrophic forgetting, we performed a simulation presented in Figure 7. Input to the network 

consists of a combination of red and green lights. Light intensity was constrained in the range 

between 0.0 and 10.0 and varied in steps of 0.5. Each stimulus intensity was presented for one 

second. The simulation started with the presentation of pure red light (IL = 10.0, IM = 0.0) and 

proceeded with a gradual decrease in the amount of red and simultaneous increase in the amount 

of green until pure green light (IL = 0.0, IM = 10.0) was presented at the end of the learning 

session. In panels A and B, neural activity is represented as a function of time on a line plot. In 

panels C–F, neural activity is represented by pixel brightness. Each image has been scaled so 

that the maximum activity and minimum activity are mapped to black and white, respectively. 

Intermediate values map linearly onto a gray scale. Node number refers to a spatial location in 

the network. The size of the F2 and F3 layer was set to N = 21. Here, we omitted the presentation 

of activity in the F0 and F1 layer. They will be discussed in more detail in the next section. 

 

 

Figure 7. Unsupervised learning of color categories. (A) The activity of cones, (B) the orienting 

subsystem, (C) the F2 layer, (D) the F3 layer, and synaptic weights in (E) the L-cone and (F) M-cone 

bottom-up pathway to the F2 layer are displayed as a function of time. 
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As can be seen, each transition in stimulus intensity detected by cones (Fig. 7A) was 

accompanied by the transient activation of the orienting subsystem (Fig. 7B) that inhibits the 

currently activated node in the F2 layer (Fig. 7C). This inhibition enabled activation of the next 

available F2 node to encode the new stimulus. The F2 layer is endowed with an intrinsic signal 

that varies in intensity as a function of network location. Node 1 received the strongest intrinsic 

signal, so it wins the competition when the first stimulus was presented. After Node 1 was 

inhibited, Node 2 won the competition and so on. In this way, the commitment of F2 nodes to 

stimuli proceeded in a regular fashion from left to right side of the network. Inhibition to the F2 

layer is delivered by the F3 layer that detects coincident activation of the node in F2 layer and 

the orienting subsystem (Fig. 7D). Importantly, the F3 nodes remained active after reset in order 

to prevent subsequent activation of their corresponding F2 nodes. The F3 nodes were switched 

off only at the end of the learning session by the gain control mechanism that multiplicatively 

gates their self-recurrent collaterals.  

Figure 7E and 7F depict learning that occurred in synaptic weights in the bottom-up F1 

→ F2 pathway originating from the L-cone and M-cone sensitive F1 node, respectively. The 

same process occurred in the top-down F2 → F1 pathway so we omit its depiction. Initially, all 

weights were set to 1. Learning was triggered by the choice of the winning node in the F2 layer. 

Synaptic weights of the F2 wining node were adjusted to match the input amplitudes, that is, 

the activity pattern in the F1 layer. For example, Node 1 was the first winner and its weights 

encoded the pure red light wL1 ≈ 1.0 and wM1 ≈ 0.0. Node 2 was the second winner and its 

weights encoded the next presented hue wL2 ≈ .95 and wM2 ≈ .05 and so on. After the current 

winner was inhibited because of the input transition, no further changes in its weights were 

observed, thus illustrating the stability of learning in the color ART circuit. It should be noted 

that complement coding in the F0 layer helps the fuzzy ART to avoid proliferation of F2 

categories and to achieve stable coding of distinct input patterns. Complement coding is a 

normalization procedure that keeps the magnitude of the input vector (1-norm) constant while 

preserving the amplitudes of its components (Carpenter et al., 1991).  

At the end of the learning session, each F2 node was tuned to one hue in the range from 

red to green. The color tuning was spatially ordered as in a rainbow so that we could use the 

network location as a label for a particular hue. Node 1 is thereby tuned to pure red (IL = 10.0, 

IM = 0.0), Node 11 to a mid-point between red and green (IL = 5.0, IM = 5.0), and Node 21 to 

pure green (IL = 0.0, IM = 10.0). All other hues were located between these points. The color 

tuning established here was used in all simulations reported in subsequent sections.  
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 It might be argued that the order of presentation of stimulus intensities in the previous 

simulation is not realistic. Early in life, an observer might encounter colors in random order. To 

address this issue, we ran another learning session with a random order of presentation of the 

same pairs of light intensities as in the previous simulation (Fig. 8). The F2 layer was activated 

in the same orderly fashion from Node 1 to Node 21 because of its intrinsic signal. However, 

neighboring F2 nodes encoded widely different hues. Importantly, each F2 node encoded a 

distinct hue. When we examined synaptic weights, we found no evidence of merging or 

omitting color categories. The reason is the fact that the vigilance parameter was set to a high 

value so that the color ART circuit treated each input pattern as a distinct hue category (i.e., hue 

exemplar). Therefore, the random order of presentation of light intensities poses no problem for 

encoding hues. 

 

 

Figure 8. Unsupervised learning of color categories with a random order of presentation of light 

intensities. (A) The activity of cones, (B) the orienting subsystem (B), (C) the F2 layer, (D) the F3 layer 

(D), and synaptic weights in (E) the L-cone and (F) M-cone bottom-up pathway to the F2 layer are 

displayed as a function of time. 

 

7.2. Simulation of the Memory Color Effect (Hansen et al., 2006) 

 

Consider an example in which a gray strawberry is presented to the color ART circuit. 

The bottom-up input was set at IL = 5.0, IM = 5.0 from t = 200 ms until the end of simulation. A 

read-out of color expectation from the inter-ART map creates another input to the F2 layer. 
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Here, we assume that a single node in the inter-ART map is connected to multiple nodes in the 

color ART circuit. The reason for this assumption is that we can observe the same object with 

different colors in different occasions. Therefore, it is likely that we can store in long-term 

memory different hues associated with the same object. Moreover, it is possible that object 

recognition further accesses linguistic knowledge that can also influence the F2 layer. In this 

example, recognition of the strawberry may activate the verbal label red that can further activate 

a range of F2 nodes associated with this label (Lupyan, 2012).  

Figure 9 illustrates two hypothetical distributions of feedback signals, labeled as narrow 

and wide, whose impact on the activity of F2 nodes were examined in subsequent simulations. 

The peak of narrow feedback is centered on the Node 3 near the node encoding pure red (Node 

1). Impact on the neighboring nodes falls off rapidly in a distance-dependent manner. Such a 

narrow distribution corresponds to a situation where color is highly diagnostic, that is, the 

observer had a narrow range of color experiences associated with an object. In contrast, the 

peak of wide feedback is centered on Node 7, which is closer to the neutral point (Node 11). 

Wide feedback falls off more slowly as a function of distance from the peak. This corresponds 

to a situation where color is less diagnostic because the observer might have more varied color 

experiences associated with an object. Still, even wide feedback may exert some influence on 

the F2 layer and thus bias color perception. In addition, we examined how the systematic 

variation of the feedback strength influences the activity of the F2 layer. To this end, we varied 

the feedback gain factor ϕ that multiplicatively scales the impact of feedback distribution. The 

feedback gain factor assumed values of 0.1, 0.3, and 0.5. Feedback distributions depicted in 

Figure 9 induce bias toward red hues. In a subsequently described simulation of the Spanish 

castle illusion we also employed feedback with bias to green hues. Green-biased feedback 

distributions were created as mirror images of the red-biased feedback. 
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Figure 9. (A) The narrow and (B) the wide distribution of feedback signals from the inter-ART 

associative map to the F2 layer were considered in simulations with three levels of the feedback gain 

factor. 

 

Figure 10 illustrates the activity of opponent L- and M-cone pathways in response to the 

presentation of gray color. The activity of cones simply tracked respective input amplitudes 

(Fig. 10A). Here, we used a convention to slightly offset activity of the M-cone in order to make 

it visible since its activity was identical to the L-cone. The same convention was used in plots 

of the transmitter gates and the activity of F0 and F1 nodes. In this simulation, transmitter 

habituation was switched off so the amount of available transmitter was kept constant at the 

initial value of 1 for the total duration of simulation (Fig. 10B). Consequently, transmitter gates 

faithfully carried over input amplitudes from cones to the F0 nodes. The F0 nodes normalize 

cone output by divisive inhibition (Fig. 10C). After an initial burst of activity due to disynaptic 

inhibition, both F0 nodes settled to 0.5 illustrating their ability to represent relative contributions 

of the L- and M-cone output.  

The F1 nodes tracked the activity of F0 nodes except during a short period of time when 

top-down signals from the F2 node reduced the activity of F1 node in the M-cone pathway (Fig. 

10D). The reason for this activity reduction was the activation of the F2 node at location 3 (Fig. 

10E). This node was a winner of the competition due to the presence of narrow feedback with 
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a gain factor of 0.1. Here, we assume that the arrival of bottom-up input was delayed relative 

to the arrival of feedback signals to the F2 layer. Feedback was thus delivered to the F2 layer 

from t = 200 ms until the end of simulation. For this reason, the winning node in the F2 layer 

was not a node encoding hue of the bottom-up input, that is, Node 11; instead, the winner was 

shifted in the direction of the feedback – in this case, Node 3. When the winning F2 was chosen, 

it had sent top-down signals to F1, where a match (i.e., fuzzy intersection) between the bottom-

up activity and the top-down weight vector was computed.  

Node 3 is tuned to a hue consisting of strong L-cone (IL = 9.0) and weak M-cone (IM = 

1.0) activation. Such color tuning is reflected in its top-down weights to F1 where w3L ≈ .90 and 

w3M ≈ .10. Since the F1 nodes computed a fuzzy intersection between the bottom-up input and 

read out of the top-down weights, it is clear that the activity reduction in the M-cone pathway 

arises from the weak top-down signal. On the other hand, no such reduction was observed in 

the F1 node of the L-cone pathway because its activity was already the fuzzy intersection 

between the bottom-up signal of 0.5 and top-down signal of 0.9. Interestingly, during this time 

period, Node 3 remained fully activated despite reduction in its bottom-up input. Such sustained 

activation or hysteresis is a consequence of a strong self-excitation.  

It might be argued that the activity reduction observed in the F1 node of the M-cone 

pathway actually supports CPV and provides a mechanistic account for it. However, this is only 

the first part of the full processing cycle in the ART circuit. The orienting subsystem 

continuously monitors for a possible mismatch between the total activity in the F0 and F1 (Fig. 

10F). Reduction of the total F1 activity triggered the transient activation of the orienting 

subsystem that inhibited the currently winning F2 node. Thereby, the orienting subsystem 

enabled a search for a new F2 category node that might achieve a better match with the F0 

pattern. In the next attempt to find an appropriate hue category, bottom-up activity outweighed 

the influence of feedback and the F2 layer selected the hue node most similar to the bottom-up 

input, that is, Node 11. A newly activated F2 node generated its own top-down signals toward 

F1. The top-down weights of Node 11 are w11L ≈ .50 and w11M ≈ .50. Thus, the fuzzy intersection 

allowed the F1 node of the M-cone pathway to recover from the previous erroneous feedback 

and to reinstate its bottom-up activity level of 0.5. In this case, the F0 and F1 activity patterns 

matched well so there was no further activation of the orienting subsystem. As a result, the 

network continued to support the activation of Node 11 in the F2 layer to the end of simulation. 

In other words, the network established a resonant state supporting the observer’s unbiased 

conscious perception of the gray color in the strawberry. By unbiased perception, we mean 
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color perception that was not influenced by memory retrieval or expectation. Importantly, 

feedback was continuously present from t = 200 ms until the end of the simulation. 

 

 

Figure 10. Simulation of the memory color effect. (A) The activity of cones, (B) transmitter gates, (C) 

the F0 layer, (D) the F1 layer, (E) the F2 layer, and (F) the r node of the orienting subsystem are 

displayed as a function of time. 

 

Figure 11 illustrates how the F2 layer handles the influence of narrow and wide feedback 

at three levels of the feedback gain factor 0.1, 0.3, and 0.5. As in the previous simulation, the 

bottom-up input was IL = 5.0 and IM = 5.0 from t = 200 ms until the end of simulation. When 

the gain factor of narrow feedback was weak, that is 0.1, the F2 node initially chose Node 4 as 

a winner (Fig. 11A top). This is close to the peak of the feedback distribution centered on Node 

3. However, the feedback was weak enough to allow bottom-up input to slightly bias the 

competitive balance toward the center of the network. When the gain factor was increased to 

0.3, the F2 layer initially chose Node 3 because narrow feedback was strong enough to 

overweight the contribution of the bottom-up input (Fig. 11B top). Next, when the feedback 

strength was further increased to 0.5, the F2 node made several attempts to find a resonant state 

starting from Node 3 (Fig. 11C top). In this condition, narrow feedback was strong enough to 

almost completely overshadow the bottom-up input. In general, as the strength of feedback 

signal increased, the F2 layer spent more time in searching for the resonant state. In other words, 

it spent more time in a biased or penetrable state. A further increase in the feedback strength 

would result in an exhaustive search of all nodes positioned at locations 1–10. Such a time-
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consuming process is clearly detrimental for an individual coping with a fast-changing 

environment. It is thus possible that neural tissue protects itself from long, unnecessary memory 

searches by imposing an upper limit on the strength of feedback connections. A comparison of 

Figures 11B and 11C suggests that ϕ = 0.3 is a reasonable upper limit, so we used this setting 

in all subsequent simulations.  

Wide feedback with the gain factor of 0.1 produced a similar pattern of activity as 

narrow feedback did (Fig. 11A bottom). When the gain factor of wide feedback was increased 

to 0.3, the F2 layer underwent a series of transitions starting with the selection of Node 7, 

jumped to Node 9 in the interval between 400 ms and 600 ms, then moved to Node 10 between 

600 ms and 800 ms, and eventually reached Node 11 after approximately 800 ms (Fig. 11B 

bottom). When the gain factor was set to 0.5, the F2 layer also visited Node 8, thus making an 

even longer search for the match with the bottom-up input (Fig. 11C bottom). An important 

observation with respect to CPV is that in each instance examined, the F2 layer eventually 

reached Node 11, which corresponds to the exact mid-point between red and green. However, 

the time needed to select this node varied as a function of the strength and shape of the 

distribution of feedback signals. In general, narrow feedback created stronger but short-lived 

hue bias, and wide feedback created weaker but longer-lasting hue bias. 

We would like to emphasize that the parameters of the feedback distribution were 

chosen arbitrarily from a range of possible values. However, they should be treated as the 

model’s free parameters that can be adjusted to fit the empirical data. As the simulation in 

Figure 11 illustrates, moving the peak of the feedback distribution toward Node 1 (or Node 21) 

makes the memory color effect stronger. Conversely, moving the peak closer to Node 11 makes 

the effect weaker. In addition, widening the spread of feedback distribution as well as increasing 

the feedback gain factor enabled the network to spend more time in a biased state, thus 

increasing the chance to detect the memory color effect.  

Further empirical work is needed to quantify the strength and shape of feedback 

influences and to constrain the choice of the model’s parameters. In this regard, an important 

practical difficulty is how to control for an observer’s prior experience with various color-object 

pairs. It is reasonable to assume that such experiences are subject to great inter- and intra-

individual variability. One solution to this problem would be to use artificial stimuli instead of 

natural objects (Goldstone, 1995). For example, in a training session, the experimenter may 

control for the frequency of occurrence of all color-shape pairs prior to the test session where 

the size of the memory color effect is assessed. Such a study may shed light on the relationship 

between the extent of prior experiences with object-color pairs and the strength of the memory 
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color effect they produce (the same suggestion extends to the Spanish castle illusion discussed 

in the next section). 

 

 

Figure 11. How the strength and duration of the memory color effect vary as functions of the type and 

strength of feedback signals that were applied. The activity of the F2 layer is illustrated in response to 

a joint presentation of a gray color and (top row) the red-biased narrow or (bottom row) red-biased 

wide feedback. The feedback gain factor ϕ was set to (A) 0.1, (B) 0.3, or (C) 0.5. 

 

Figure 12 illustrates how the timing of arrival of feedback signals relative to the bottom-

up input influenced the activity of the F2 layer. As in previous simulations, the bottom-up input 

was IL = 5.0 and IM = 5.0 from t = 200 ms until the end of simulation. Moreover, the feedback 

gain factor was fixed at 0.3 in both narrow and wide feedback. Feedback was turned on at t = 

250 ms, t = 275 ms, or t = 300 ms, thus creating feedback delays of 50 ms, 75 ms, or 100 ms, 

respectively. When feedback was delayed for 50 ms, the F2 layer was biased toward red hues 

to the same degree as observed when there was no delay in both narrow (Fig. 12A top) and 

wide (Fig. 12A bottom) feedback. However, when the feedback delay was 75 ms, narrow 

feedback was unable to penetrate the activity of the F2 layer (Fig. 12B top). In the case of wide 

feedback, there was a weak bias toward red, as the initial winner was Node 10 (Fig. 12B 

bottom). Later on, this was corrected by the reset signal, and the F2 layer chose Node 11. When 

the feedback delay was 100 ms, neither narrow (Fig. 12C top) nor wide (Fig. 12C bottom) 

feedback could penetrate the F2 layer anymore. In this condition, the F2 layer immediately chose 

Node 11 as a winner. This simulation indicates that there is a narrow temporal window during 
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which feedback signals are able to penetrate the F2 layer and to bias color perception toward 

diagnostic hues.  

 

 

Figure 12. The activity of the F2 layer is shown in response to a joint presentation of a gray color and 

(top row) the red-biased narrow or (bottom row) red-biased wide feedback, with a feedback delay of 

(A) 50 ms, (B) 75 ms, or (C) 100 ms. 

 

Figure 13 illustrates how the speed of neural activation (a node’s time constant τx) 

influenced the penetrability of the F2 layer. We used the same settings for the bottom-up input 

and for narrow and wide feedback as in the previous simulation. In addition, we varied the time 

constant of the F2 node between 100 ms, 50 ms, and 25 ms to make it slower relative to the F1 

layer and other model components. When the F2 layer was made very slow with τx = 100 ms, 

the memory color effect completely disappeared in the condition of narrow feedback (Fig. 13A 

top). On the other hand, wide feedback produced a weak but long lasting memory color effect 

(Fig. 13A bottom). The F2 layer selected Node 10 as a winner and this node remained active 

almost to the end of simulation. At around 1,400 ms, Node 10 was inhibited and eventually 

replaced by Node 11 (not shown). When the speed of neural activity was set at τx = 50 ms, 

narrow feedback still did not show a memory color effect while wide feedback exhibited a 

stronger but short lasting effect (Fig. 13B top). Under wide feedback, the F2 layer selected Node 

8 but it was inhibited and replaced by Node 11 at around 1,000 ms (Fig. 13B bottom). Finally, 

when the time constant was set at τx = 25 ms, both narrow (Fig. 13C top) and wide (Fig. 13C 
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bottom) feedback produced a memory color effect that was comparable in magnitude and 

duration to the effect observed with the default setting of time constant τx = 10 ms. 

As can be seen from the previous simulations, achieving unbiased color perception 

requires some time to clear the traces of top-down influences. The amount of time required to 

reach resonance depends on several factors. First, it depends on the strength of feedback signals 

and the shape of their distribution. Second, it depends on the relative timing of feedback signals 

and bottom-up input. Finally, the speed of neural integration within nodes in the F1 and F2 layers 

(their time constants) may also contribute to the total amount of time the network will spend in 

the hysteretic state that is not supported by the bottom-up input. If the observer chooses to 

respond prior to the occurrence of the reset signal, then his or her report will reflect bias induced 

by the top-down expectation. However, if the observer waits for a while until the dynamics of 

the ART circuit settle on the unbiased, long-lasting resonant state, then no memory color effect 

would occur as observed by Valenti and Firestone (2019). Consistent with this observation, 

Olkkonen et al. (2008) have found that the strength of the memory color effect negatively 

correlates with response times: the longer participants wait before issuing a response, the 

weaker the effect becomes. On the other hand, Lupyan (2015b) has not found such a correlation, 

although it should be noted that, in the instructions to participants, he emphasized that they 

should respond as fast as possible. This pressure to respond fast, we argue, creates a bias to 

report color that reflects top-down influences because the color ART circuit did not settle on its 

final color category yet. 
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Figure 13. The activity of the F2 layer is depicted in response to a joint presentation of a gray color 

and (top row) the red-biased narrow or (bottom row) red-biased wide feedback, with the integration 

time constant of the F2 nodes set to (A) 100 ms, (B) 50 ms, or (C) 25 ms. 

 

It should be noted that in all simulations reported in this paper, the vigilance parameter 

was set to a high value. It might be argued that this is not a realistic scenario and that there is a 

possibility for lapses in vigilance that may lead to acceptance of biased hues in the color ART 

circuit. This is a potential avenue for allowing cognition to penetrate color perception. However, 

we would like to emphasize that any such lapses of vigilance are transient in nature. Even if the 

ART circuit spends some time in a state of low vigilance where resonance is established with a 

biased hue category, it will eventually recover from such condition and reinstate its sharp 

distinction between hue categories. We consider variations in vigilance as just another factor 

that contribute to a great variability in the strength of a memory color effect as observed 

experimentally.  

Figure 14 illustrates the behavior of the F2 layer under different choices of vigilance 

parameter ρ. The bottom-up input as well as narrow and wide feedback were the same as in 

previous simulations. Vigilance was set at 0.5, 0.7, or 0.9 in the interval [0 ms, 800 ms]. A low 

level of vigilance such as 0.5 enabled both narrow (Fig. 14A top) and wide (Fig. 14A bottom) 

feedback to penetrate the F2 layer and to generate a resonant state with a feedback-biased choice 

of hue. When vigilance was increased to 0.7, narrow feedback produced a sufficiently large 

mismatch that was detected by the F2 (Fig. 14B top). Subsequently, Node 11 was chosen that 

corresponds to veridical perception of gray. On the other hand, wide feedback passed the 
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vigilance test and remained in a biased state with the choice of Node 7 as a winner (Fig. 14B 

bottom). When vigilance was further increased to 0.9, even wider feedback produced reset of 

the F2 layer (Fig. 14C bottom). However, after reset, Node 9 was chosen as a winner suggesting 

that the network remained in a biased state. Importantly, after vigilance returned to its default 

value of 0.96 at t > 800 ms, in all conditions examined, the F2 layer reacted with the inhibition 

of the current winner and selection of Node 11 unless Node 11 was already selected before.  

 

 

Figure 14. The activity of the F2 layer is portrayed in response to a joint presentation of a gray color 

and (top row) the red-biased narrow or (bottom row) red-biased wide feedback, with a vigilance 

parameter ρ set to (A) 0.5, (B) 0.7, or (C) 0.9 from the start of the simulation up to 800 ms. After 800 

ms, vigilance was set to a default value of 0.96 until the end of the simulation. 

 

7.3. Simulation of Spanish Castle Illusion (Lupyan, 2015b) 

 

Figure 15 illustrates how color pre-processing generates a typical afterimage without 

the presence of feedback signals. First, we let the network adapt to the red color followed by 

the presentation of gray color. Thus, the bottom-up input was set to IL = 10.0 and IM = 0.0 in 

the interval between t = 100 ms and t = 600 ms and then to IL = 5.0 and IM = 5.0 until the end 

of simulation. During the maintenance of an elevated activity level in the L-cone pathway (Fig. 

15A), its neurotransmitter gate decayed and became less effective because of the exhaustion of 

its presynaptic buttons (Fig. 15B). In other words, prolonged exposure to the same stimulus 

creates a situation where presynaptic neural activity places more demands on the transmitter 

release than the presynaptic buttons can synthesize.  
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In the F0 layer, there was an initial overshoot in the L-cone pathway in response to the 

presentation of red color (Fig. 15C). It was followed by a small dip in its activity because of 

transmitter depletion. However, it was counteracted by the similar depletion in the inhibitory 

connection to F0. Here, divisive inhibition enables the F0 node to remain sensitive to its input 

despite the fact that the transmitter gate almost approached zero.  

 

 

Figure 15. Simulation of an afterimage without feedback. (A) The activity of cones, (B) transmitter 

gates, (C) the F0 layer, (D) the F1 layer, (E) the F2 layer, and (F) the r node of the orienting subsystem 

are displayed as a function of time. 

 

After the network was adapted to red, the subsequent presentation of a mid-gray 

stimulus activated both cone pathways to the same degree. However, the response of the F0 

node in the M-cone pathway was stronger than that of the L-cone because of the imbalance in 

the amount of neurotransmitter available in the two pathways. As a consequence of this 

imbalance, there was an activity overshoot in the M-cone pathway. The temporal evolution of 

activity of the F1 nodes follows a similar pattern as observed in respective F0 nodes (Fig. 15D). 

Their activity level was generally lower relative to F0 nodes because they compute a fuzzy 

intersection. The activity of the F2 layer (Fig. 15E) and the orienting subsystem (Fig. 15F) 

tracked changes that occurred in the F1 layer.  

At the beginning, the F2 layer selected Node 1 as a winner, indicating perception of pure 

red. When the input color switched to gray, activity overshoot in the F1 node of the M-cone 

pathway triggered the activation of the orienting subsystem and forced the selection of Node 
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15 in the F2 layer. This node is tuned to input IL = 3 and IM = 7 that, in normal circumstances, 

corresponds to perception of slightly greenish hue. Node 15 is far from pure green (Node 21) 

but it still represents a bias toward green. In this way, the habituative transmitter gates in a 

bottom-up pathway to the color ART circuit explain how typical afterimage arises from the 

gray stimulus after prolonged adaptation to its complementary color.  

 

 

Figure 16. Simulation of the Spanish castle illusion. The activity of the F2 layer is depicted in response 

to (A) the red-biased and (B) green-biased narrow feedback, as well as (C) the red-biased and (D) 

green-biased wide feedback, and (E) in a neutral condition without feedback. 

 

Figure 16 illustrated how feedback from the inter-ART associative map to the F2 layer 

makes color sensation stronger (more vivid) in a feedback-enhanced afterimage. In all panels, 

the bottom-up input was always the same as depicted in Figure 15. Feedback was delivered to 

the F2 layer from t = 600 ms until the end of simulation. Here, we varied the orientation of 

feedback distribution that could either induce bias to red or to green hues along with the type 

of feedback (narrow vs. wide). When the red-biased narrow feedback was applied, Node 15 

was selected in the short temporal interval after recovery from the adaptation to pure red (Fig. 

16A). The same node was also chosen as a winner in the control condition, that is, in a condition 

that generates a typical afterimage with no feedback present (Fig. 16E). This is consistent with 

the experimental report of Lupyan (2015b) who observed no statistically significant difference 

between a condition where bias was induced toward adapted hue and a control condition. On 

the other hand, the green-biased narrow feedback forced selection of Node 19 in the same 
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temporal window (Fig. 16B). This node is tuned to the input of IL = 1 and IM = 9 corresponding 

to perception of more vivid greenish hue relative to Node 15, which is activated by typical 

afterimage. Node 19 is also closer to pure green encoded by Node 21. In this way, the green-

biased narrow feedback increased vividness of the experience of a green color in the afterimage 

as observed in the Spanish castle illusion. As in previous simulations, we note that such a 

feedback-enhanced afterimage is fleeting, and it is removed from the F2 layer by the activation 

of the orienting subsystem at around 1,100 ms. Therefore, our simulation also explains why we 

eventually arrive at the realization that we are watching an achromatic scene. Interestingly, 

informal observation suggests that this realization comes suddenly, akin to the effect of the reset 

signal on the F2 layer.  

Wide feedback with bias to red reduced color experience of the normal afterimage (Fig. 

16C). Here, the F2 layer chose Node 12 immediately after adaptation. This node is an immediate 

neighbor of Node 11 and corresponds to a weakest possible bias toward green. No such effect 

has been reported by Lupyan (2015b). However, it is possible that he selected only those objects 

that will produce a strong effect on the afterimage and avoided objects producing a weaker 

effect. We also observe that the green-biased wide feedback cannot generate the feedback-

enhanced afterimage because its peak is located on Node 15 (Fig. 16D), the same node that is 

also selected in the control condition that generates a typical afterimage (Fig. 16E). Here, the 

only effect of feedback was to allow Node 15 to spend more time as a winner. We also note 

that this is the only simulation where the F2 layer chose Node 12 instead of Node 11 as a final 

winner. The reason for this anomalous behavior is the fact that the total activity in the F0 and 

F1 was slightly lower than in the non-adapted state. Thus, the fuzzy intersection between the 

activity of F0 and the top-down signals generated by Node 12 failed to cross the vigilance 

threshold to activate the orienting subsystem. However, it is reasonable to assume that 

transmitter gates would eventually recuperate from habituation and that they would reinstate 

veridical signal transmission. This would increase the discrepancy between the F0 and F1 

activity enough to trigger reset of the F2 layer.  

 

7.4. Simulation of the Effect of Color Working Memory 

 

Figure 17 illustrates how narrow (top row) and wide (bottom row) feedback from the 

inter-ART associative map bias the transfer of activity from the F2 layer to the WM circuit. As 

in simulation 7.2., the bottom-up input was IL = 5.0 and IM = 5.0 from t = 200 ms until the end 

of simulation. Feedback was supplied in the same temporal interval. Suppose that the observer 
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attends to the stimulus with a familiar shape first. In this case, object recognition in the shape 

ART circuit generated either narrow or wide feedback. The response of the F2 layer to the 

feedback signals was the same as already observed in Figure 11B. In parallel, the WM circuit 

tracked the initial activity of the F2 layer and selected the hue node at the similar spatial location. 

In the case of narrow feedback, the WM circuit selected Node 3, and in the case of wide 

feedback, it selected Node 7. Importantly, the WM circuit was sensitive to the F2 input only at 

the early stage of the temporal evolution of its activity. Next, recurrent interactions within the 

WM circuit (i.e., lateral inhibition and self-excitation) started to dominate over the bottom-up 

input. Thus, the WM circuit remained insensitive to further changes that occurred later on in 

the F2. Like the F2 layer, the WM circuit is a hysteretic network but without external reset that 

can direct its activity toward the bottom-up input. 

Figure 17 shows how a discrepancy in color representation is created between the F2 

and the WM circuit. Next, suppose that the observer moves its attention to another gray stimulus 

without recognizable shape and judges its color. In this case, there would be no feedback signals 

from the inter-ART associative map. Thus, the F2 layer would immediately select Node 11 

while the WM circuit would maintain its previously established hue representation. When asked 

to make a color judgment, the observer will judge the color of the currently attended stimulus 

in relation to the color representation held in WM. This would produce a bias because a 

previously attended object would be judged as more reddish than it actually is. For example, a 

heart is judged to be more reddish than a circle of the same hue as observed in the study of Delk 

and Fillenbaum (1965) and in experiment 3 of Valenti and Firestone (2019). The same 

processes described above may also help to explain the effect of categorization of colored letter 

and numerals on hue perception (Goldstone, 1995) and the effect of positive and negative 

emotions on brightness perception (Banerjee et al., 2012; Song et al., 2012). More generally, 

such WM bias may contaminate the results of all experimental tasks involving comparison 

between two or more stimuli. 
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Figure 17. Transfer of activity from (A) the F2 layer to (B) the color working memory circuit when 

(top row) the red-biased narrow or (bottom row) red-biased wide feedback was applied to the F2 

layer. 

 

7.5. Simulation of Neural Evidence for Cognitive Penetrability of Color Vision 

 

We also examine the fMRI evidence of CPV obtained when participants view the 

achromatic images of objects with a diagnostic or typical color (Bannert & Bartels, 2013; 

Vandenbroucke et al., 2016). An important feature of the BOLD signal is that it represents the 

spatiotemporal average of activity of a large number of neurons taken over an extended period 

of time (on the order of several minutes). The dynamics of blood flow are slower relative to 

neural events that trigger its local increase or decrease. For this reason, the BOLD signal always 

represents a delayed and blurred picture of neural activity. In this regard, our explanation of the 

fMRI studies demonstrating CPV follow the same logic as an explanation of behavioral 

findings. Figure 18 illustrates this point. We computed metabolic response of the F2 nodes as 

an integral of their spatially blurred activity. The integral was taken over the temporal interval 

of one second. Here, we considered four conditions: red and gray color without feedback and 

gray color with narrow or wide feedback. Bottom-up input and narrow or wide feedback were 

delivered from t = 200 ms to the end of simulation at t = 1,000 ms. The metabolic response to 

a gray color was clearly biased toward red in the presence of either narrow or wide feedback. 
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Thus, it would be possible to decode the brain signal associated with an expected color despite 

the fact that the observer is actually perceiving achromatic color. 

  

 

Figure 18. Simulated metabolic response of the F2 layer when the input was a red (IL = 9.0, IM = 1.0) 

or gray color (IL = 5.0, IM = 5.0) without feedback and when the gray color was presented together 

with the red-biased narrow feedback (NF) or the red-biased wide feedback (WF). 

 

In addition, there is evidence that the expected color signal can also be decoded in V1 

(Bannert & Bartels, 2013). Given that color tuning is not present in V1, it is not likely that such 

activity represents color perception (Conway et al., 2007; Conway & Tsao, 2009). Rather, it 

may reflect the activation of the global feature-based attention that gives a competitive 

advantage to the expected color. In other words, the inter-ART associative map may not only 

send feedback to the F2 layer to create an expectation of what is likely to occur next, but also 

create a competitive bias in the early stages of processing where it may facilitate the registration 

and transmission of an expected feature value. Still, this does not mean that V1 is penetrable. 

We argue that feature-based attention as well as object- and space-based attention operate via a 

separate network. This will be further elaborated in Section 8.1. Adaptive resonance theory and 

attention.  
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8. SPATIAL ATTENTION 

 

8.1. Adaptive Resonance Theory and Attention 

 

Lupyan (2017a) has argued that directing attention to a part of a visual scene constitutes 

evidence of CPV because moving attention to a location in space effectively alters appearance 

at that location. In addition, numerous studies of single-unit recordings in the monkey brain 

revealed that attention modulates response properties of neurons in the visual cortex (Reynolds 

& Chelazzi, 2004; Treue, 2001). In this section, we address the question of how attention 

interacts with the color ART circuit without disrupting its ability to encode hue of the bottom-

up input. Following Beck and Schneider (2017), and motivated by the anatomical findings 

about segregated feedforward and feedback pathways in the visual cortex (Markov et al., 2013, 

2014; Markov & Kennedy, 2014), we suggest that early stages of visual processing consist of 

two parallel and segregated networks, which are labeled as a saliency network and a veridical 

network (Fig. 19).The saliency network is dedicated to the computation of saliency based on 

the bottom-up or top-down cues. It culminates in the selection of all locations occupied by a 

single object that is in the current focus of attention. On the other hand, the veridical network 

is dedicated to faithful transmission of feature values registered in the retina and passed through 

the LGN and V1 to higher-level centers such as inferotemporal cortex. From this view, all 

available evidence of the attentional modulation of neurons in the LGN, V1, and V2 actually 

reveals the operation of the saliency network. However, in parallel, a separate veridical network 

exists that encodes feature values (i.e., the amount of redness or greenness) at all locations 

uncontaminated by top-down influences. To sample the specific feature value that occurs on 

the attended object, the saliency network interacts with the veridical network in V4. One way 

in which to achieve this is via dynamic routing by multiplicative gating of the signal flow from 

V2 to V4 (Heinke & Humphreys, 2003; Olshausen et al., 1993, 1995). Another possibility is to 

induce synchronization of oscillatory activity specifically for the object of attention (Baldauf & 

Desimone, 2014). The source signal for this routing may arise from the posterior parietal cortex 

(PPC) as shown by Van Dromme et al., (2016). 
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Figure 19. Segregation between parallel veridical and saliency networks in the early visual cortex 

explains how attention might select an object without disrupting the color-opponent signals used to 

compute hue in the PIT. 

 

To select the attended feature value without destroying the hue information it carries, 

the PPC should operate as a feature-based WTA network. It should contain a binary spatial 

representation akin to a Boolean map proposed by Huang and Pashler (2007). In this map, all 

locations belonging to the attended object are marked by an elevated firing rate, and all other 

locations are suppressed to zero. Marić and Domijan (2018) showed how a WTA network may 

implement the Boolean map. A similar idea is expressed by the concept of the attentional 

shroud, which covers the attended object and suppresses its background (Fazl et al., 2009; Foley 

et al., 2012). Next, the output of the PPC interacts multiplicatively with the feedforward signal 

flow from V1 or V2 to V4. Multiplication assures that the color signal in V4 arriving from the 

attended object remains the same as if the object is presented alone in the scene. On the other 

hand, unattended locations are filtered out because they are multiplied by zero. These processes 

are illustrated in Figure 20. Another possibility is that attention segregates distinct perceptual 

groups into separate segmentation layers in V2 (Francis et al., 2017). In this model, each 

segmentation layer operates as a distinct Boolean map. In either way, color signals can be 
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dynamically routed from retinotopic maps in V1 to translation-invariant color representation in 

V4 (Heinke & Humphreys, 2003; Olshausen et al., 1993, 1995).  

Such a proposal is consistent with a biased competition model and empirical studies 

suggesting that attention in V4 operates as a filter, which leaves the representation of the 

attended object intact and suppresses representation of distractors (Desimone & Duncan, 1995; 

Reynolds et al., 1999). A similar idea has been used in a model of interaction between saliency 

computation and object recognition (Walther & Koch, 2006). The proposed model uses a spatial 

representation similar to the Boolean map to encode all locations occupied by the selected 

object. This information is then projected back to multiplicatively gate the signal flow in the 

object recognition network.  

 

 

Figure 20. Detailed view of the interaction between the PPC and V4 that generates translation-

invariant input to V4. In this example, input consists of four colored squares, and spatial attention is 

directed to the second square from the left. The selected square is depicted in black, while suppressed 

squares are marked in white in the PPC, and X denotes multiplication occurring on dendrites of the 

V4 nodes. 

 

After the cone-opponent signal of the attended object is registered in V4, the color ART 

circuit may select a color category in the PIT that best matches with the bottom-up activity. As 

part of this process, feedback projections from the PIT to V4 read out the top-down, learned 

expectations in V4. Furthermore, the PIT may receive its own top-down signals from the AIT 

where the inter-ART associative map integrates information about the object’s color and shape. 
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Therefore, the AIT → PIT → V4 is a feedback pathway responsible for communicating 

predictions to V4. Importantly, this feedback is segregated from the feedback pathway between 

the PPC and V1, which is involved in spatial selection. Finally, it should be noted that the 

computation in the saliency network does not need to be restricted to spatial attention. Instead, 

it may be guided by a chosen non-spatial feature value such as a red color. In addition, spatial 

and feature-based attention may interact together to specify the location of the target stimulus 

(Leonard et al., 2015; van Es et al., 2018).  

 The proposed scheme for the interaction between spatial attention and the color ART 

circuit clarifies why attention and expectations should be treated as separate sources of feedback 

signals (Summerfield & de Lange, 2014; Summerfield & Egner, 2009, 2014). The present 

analysis suggests that attention and expectations solve different computational problems. First, 

spatial attention is needed to solve the superposition catastrophe or feature-binding problem in 

the multi-object scene (von der Malsburg, 1999). In this regard, spatial attention is required to 

highlight features belonging to the attended object and to bind them together into a unified 

object representation. At the same time, features of the unattended objects are filtered out by 

suppressing their neural representation. In this regard, spatial attention must operate before the 

color ART circuit begins to encode the color-opponent inputs into a perceived hue. Second, 

expectations are needed to solve the stability–plasticity dilemma and to prevent catastrophic 

forgetting, as discussed above (Grossberg, 1980). 

 

8.2. ARTSCAN 

 

The previous section presented a simplified view on the possible interactions between 

spatial attention and the ART circuit. An alternative and more detailed explanation of the way 

in which spatial attention and eye movements interact with translation-invariant object 

recognition during active vision is provided in an ARTSCAN model developed by Grossberg 

and colleagues (Cao et al., 2011; Chang et al., 2014; Fazl et al., 2009; Foley et al., 2012). It 

consists of two parallel processing streams – the What Stream and the Where Stream – 

mimicking the division of labor between ventral and dorsal pathways in the visual cortex 

(Goodale & Milner, 1992; Ungerleider & Mishkin, 1982). On the one hand, the What Stream 

is associated with object learning, recognition, and prediction. It progressively builds a more 

abstract object representation from view-specific nodes in the PIT to view-invariant nodes in 

the AIT. On the other hand, the Where Stream is involved in object localization, spatial- and 

object-based attention, and predictive remapping during eye movements. The model explains 
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how view-specific and view-invariant representation of object categories develops during 

active exploration of the visual scene.  

Based on the ARTSCAN model, Grossberg (2017b) has suggested that visual 

consciousness can be divided into two distinct experiences supported by two different types of 

resonance (Fig. 21A). The first is an experience of recognizing an object or a scene that is driven 

by feature-category resonance, While the second is an experience of seeing a visual object or a 

scene driven by surface-shroud resonance. Feature-category resonance was already discussed 

and involves a ventral visual stream with its recognition codes in the AIT cortex. In contrast, 

surface-shroud resonance develops in the recurrent pathway between V4 and the PPC when we 

selectively attend to an object. The input to this process is the surface representation in V4. It 

receives feedback from the PPC, which selectively amplifies locations and features belonging 

to the attended object and suppressed locations and features of unattended objects. In this way, 

surface-shroud resonance modulates the input to feature-category resonance and prevents 

simultaneous encoding of features of multiple objects. These two types of resonance are 

coordinated to bring the unified conscious experience of what we are looking at and where it 

is. 

Grossberg (2017b) has suggested that the distinction between surface-shroud and 

feature-object resonance reflects the distinction between seeing and knowing. In contrast, our 

proposal for color coding in the PIT rests on the idea that surface-shroud resonance is a 

prerequisite, but it is not sufficient to generate color qualia (Fig. 21B). Surface-shroud 

resonance enables the selection of a set of locations from which feature values will be extracted. 

When certain locations are selected, feature values such as color-opponent responses at those 

locations become available to enter into the color and shape ART circuits. In other words, we 

suggest that independent feature-category resonances develop for colors and shapes (and 

possibly other perceptual attributes) in the PIT. Such parallel feature-category resonances in the 

color and shape ART circuits correspond to seeing an object’s color and shape, respectively. At 

the next processing stage in the hierarchy (AIT), color and shape are bound together into a 

unified object representation that gives rise to conscious knowledge about the object.  
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Figure 21. (A) Distinction between seeing and knowing based on their neural circuitry, according to 

Grossberg (2017b). (B) The modification proposed here is based on recent findings regarding the 

neural underpinnings of color perception (Conway et al., 2007; Conway, 2009; Conway & Tsao, 

2009). 

 

 

9. CONCLUSION 

 

In this work, we showed through computer simulations that the ART circuit is a specific 

computational implementation of the predictive coding system that is not penetrable by top-

down influences. A unique feature of the ART circuit is that it is an attractor neural network 

supplemented by two control mechanisms: gain control and an orienting subsystem. Their role 

is to solve the stability–plasticity dilemma, that is, to simultaneously prevent the erosion of 

previously learned recognition codes and enable sufficient plasticity to learn new codes in the 

future. Balance between stability and plasticity is achieved by constraining the impact of top-

down predictions on the ongoing network processing. As a side effect of the operation of gain 

control and the orienting subsystem, conscious visual perception is almost never cognitively 

penetrable. The ART circuit is vulnerable to top-down influences during the period of searching 

through the state space to find the best match between bottom-up input and the choice of hue 

category. Traces of this memory search are observed in behavioral and functional neuroimaging 

studies. Crucially, the ART search cycle is a transient process. After the network reaches the 

attractor, it is fully resistant to any further top-down influence. In other words, the ART circuit 

enters into a resonant state that corresponds with conscious visual perception. 
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APPENDIX. Model Equations and Parameters 

 

The model is defined by a set of ordinary differential equations, which are numerically 

solved using Euler’s forward method. The time scale of the nodes' activities is taken to be a unit 

of time, with the convention that one unit of time is equal to 10 ms in real time. The step size 

of 0.01 used in numerical integration thus corresponds to 0.1 ms in real time. The Matlab code 

to reproduce all the results reported in this article have been made publicly available via the 

Open Science Framework and can be accessed at https://osf.io/zphyq/. 

 

A.1. Color Pre-processing 

 

The activity of cone ci with spectral sensitivity  ,i L M is governed by the following 

equation:  

 

 c i i i

d
c c I

dt
    .  (1) 

 

Term τc in Eq. (1) denotes the cone’s time constant, and Ii is an input amplitude (light intensity) 

selected from the following set: 

 

  0.0,0.5,1.0,1.5, ,10.0iI    (2) 

 

with the constraint that IM = 10.0 - IL. The activities of the L- and M-cones thus complement 

each other. Each cone projects its output to the F0 node with the same spectral selectivity. The 

activity of F0 node 
 0

ix  is governed by 
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where τx is a time constant of the excitatory node, and αr controls the slope of its activation as 

a function of input amplitude. Cones also project their output to a common inhibitory 

interneuron  0
y . Its activity is defined by  

 

 
   0 0

y i i

i

d
y y z c

dt
      (4) 

 

where τy is a time constant of the inhibitory node. An inhibitory interneuron normalizes the 

activity of F0 nodes to the interval [0, 1]. Furthermore, excitatory and inhibitory projections are 

both modulated by habituative transmitter gate zi. Temporal evolution of the transmitter gate is 

governed by the following equation: 

 

  z i i i i

d
z z z c

dt
        (5) 

 

where τz is a time constant of transmitter habituation, and β controls the rate of transmitter 

production until it reaches upper limit γ. Parameter δ controls the rate of transmitter depletion 

triggered by the presynaptic activity arriving from cone ci. Moreover, the parameter values of 

the color pre-processing circuit were set as τc = 50 ms, τx = τy = 10 ms, τz = 1,500 ms, α0 = 0.001, 

β = 0.1, and γ = 1. Parameter δ was set to 10 in the simulation presented in Section 7.3. involving 

afterimages, and δ = 0 in all other simulations. 

 

A.2. Color ART Circuit 

 

In the fuzzy ART, the F1 layer computes the fuzzy intersection between the vector of 

bottom-up input and the vector of top-down weights that are read out by the winning node in 

F2. Fuzzy intersection is defined as a component-wise minimum between two vectors. The 

activity of F1 node 
 1

ix  with spectral sensitivity i is thus defined by 

 

 
            1 1 0 0 2

1 11 min ,x i i i i i

d
x x g x g x X

dt
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where 
 2

iX  denotes the total postsynaptic current arriving from the top-down pathway F2 → F1 

given by  

 

     2 2
min ,i ji j

j

X w x .  (7) 

 

Eq. (7) describes the read-out of top-down adaptive weights generated by fuzzy intersection 

between the weight vector and the vector of F2 activities.  

The problem with fuzzy intersection in Eq. (6) is that the F1 layer will remain inactive 

if no suprathreshold top-down signals are present. To address this issue, we designed a gain 

control node g1 to allow the F1 node to pass bottom-up activation to the F2 layer in the absence 

of top-down signals. This is achieved by multiplicative gating of the activity of the F1 layer by 

g1. The g1 node receives excitation from the F0 layer and inhibition from the F2 layer. The action 

of g1 on the F1 layer mimics the effect of acetylcholine on the cells in the visual cortex (Harris 

& Thiele, 2011). On the one hand, elevated levels of acetylcholine strengthen feedforward 

signal transmission and reduce the impact of feedback signals. On the other hand, a lower level 

of acetylcholine has an opposite effect: it strengthens the impact of feedback signals on the 

cell’s activity. In the same manner, when g1 is active, F1 is able to transmit bottom-up signals 

from F0 to F2 without top-down signals. When g1 is inactive, top-down signals are read out in 

F1, and F1 computes a fuzzy intersection. 

The activity of gain control node g1 is defined by 

 

 
   0 2

1 1 0 2g i j

i j

d
g g H x H x

dt
  



   
        

    
    (8) 

 

where τg is a time constant, [u]+ denotes the threshold-linear or half-wave rectification function 

 

    max ,0u u

   (9) 

 

and H(u) denotes a Heaviside step function 

 

  
0 0

1 0

if u
H u

if u


 


. (10) 
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Thresholds θ0 and θ2 in Eq. (8) prevent the hair-trigger activation of g1 by low activity levels in 

the F0 and F2 layers, respectively.  

The activity of F2 node 
 2

jx  at spatial location  1, ... ,j N  is defined by 

 

 
             2 2 1 2 2 3

2 2min ,x j j ij i j j j j

i

d
x x S w x g x a b y y

dt
  

 
        

 
   (11) 

 

 

where S(u) is a piecewise-linear function 

 

  

0 0

0

if u

S u u if u

if u



 




  
 

  (12) 

 

with upper saturation point λ. The bottom-up input from the F1 layer is passed through a filter 

of synaptic weights wij. The bottom-up pathway also computes fuzzy intersection in order to 

generate a postsynaptic current on the F2 node. The activity of F2 gain control node g2 is defined 

by 

 

 
 0

2 2 0g i

i

d
g g H x

dt
 

 
    

 
   (13) 

 

where θ0 is a threshold. The g2 node multiplicatively gates all sources of feedback signals to the 

F2 node, including its self-excitation whose strength is controlled by ε2.  

Term aj denotes the spatial gradient of intrinsic activity that was used in the simulation 

of unsupervised learning (simulation presented in Section 7.1.). Intrinsic activity is defined by 

 

  1 0.05 1ja j   .  (14) 

 

In all other simulations, aj = 0 for all j.  

Feedback signals from the inter-ART associative map to the F2 node was modeled as 

 

 

 
11jb j  


       (15) 
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where ϕ is a feedback gain factor, μ determines the location of the peak of the feedback 

distribution, and η determines its spread. Narrow feedback with a bias toward red (green) hues 

was defined by μ = 3 (μ = 19) and η = 5. Wide feedback with a bias toward red (green) hues 

was defined by μ = 7 (μ = 15) and η = 10. The feedback gain factor was set at ϕ = 0.3 in both 

narrow and wide distribution. In the simulation presented in Figure 11, the feedback gain factor 

was drawn from the set  0.1, 0.3, 0.5  . Feedback signals were set to bj = 0 for all j during 

learning (simulations presented in Section 7.1.). 

In Eq. (11), the F2 node receives two sources of inhibition. One source is an inhibitory 

interneuron  2
y , mediating lateral inhibition that leads to a WTA choice among the F2 nodes. 

The activity of  2
y  is governed by the following equation: 

 

 
     2 2 2

y j

j

d
y y x

dt
    .  (16) 

 

Another source of inhibition is a reset signal mediated by a separate inhibitory 

interneuron 
 3

jy . Its impact on the F2 node is controlled by the parameter χ. The activity of the 

inhibitory interneuron carrying the reset signal is governed by the following equation: 

 

 
     3 3 3

y j j j

d
y y x

dt
    .  (17) 

 

Interneuron 
 3

jy  receives excitation from the F3 node (Fig. 22). Its role is to enable a search for 

the best-matching F2 node. The layer of F3 nodes continues to inhibit all F2 nodes that are 

already visited during a single stimulus presentation. In this way, the F3 layer operates as an 

interface between the attentional and the orienting subsystem (Domijan & Šetić, 2016). It 

allows a non-specific reset signal generated in the orienting subsystem to be delivered 

specifically to the currently winning F2 node. The activity of F3 node 
 3

jx  is defined by 

 

 
        3 3 2 3

3 2 3x j j j j

d
x x S x r g x

dt
  



      
    (18) 
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where S(·) is a node’s output function, [·]+ is a half-wave rectification describing 

computation at the dendrite of the F3 node, and θ3 is a dendritic threshold. The dendrite of the 

F3 node detects coincident activation of the F2 node at the same network location j and of the 

reset node r defined by Eq. (19). Furthermore, the F3 node is endowed with a self-recurrent 

collateral that enables it to sustain suprathreshold activity after the corresponding F2 node is 

inhibited. The strength of self-excitation is controlled by the parameter ε3. In addition, self-

excitation is multiplicatively gated by the gain control g2 in order to abolish sustained activity 

of the F3 node when the stimulus disappears. Such gating enables the F3 layer to start a new 

memory search when new input is presented.  

 

 

Figure 22. A node in the F3 layer with connections to other model components. 

 

The degree of match between the total activity in the F0 and F1 layers is monitored by 

the reset node r, whose activity is governed by the following equation: 

 

 
 

 

 

1

2

0

i

i
r j r

j r i

i

x
d

r r H x H
dt x

  


 
   

       
   

 





  (19) 
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where τr is a time constant of the r node that is chosen to be slower than the time constants of 

the excitatory nodes in the F0 and F1 layers (𝜏𝑟 ≫ 𝜏𝑥) to make the r node less sensitive to 

transient fluctuations in the F0 and F1 activity. The second term on the r.h.s. of Eq. (19) describes 

a gating of the r node by the activity of the F2 layer. The term θr is a threshold that prevents the 

activation of the r node when the F2 layer activity is weak. The last term on the r.h.s. of Eq. 

(19) describes a test of how much smaller the total activity in the F1 layer is than the total 

activity in the F0 layer, where αr is a choice parameter and ρ is vigilance. Gating by the F2 

activity was introduced to prevent premature activation of the orienting subsystem. On the first 

wave of the signal flow through the attentional subsystem, the F0 layer is activated before F1. 

This creates a short temporal window when a mismatch occurs between the activity of F0 and 

F1 that is not a consequence of the mismatch between sensory and top-down signals in F1 

because F1 is not yet activated by the F0. Gating by the F2 activity consequently assures that the 

r node will become active only when two events occur simultaneously: there is a mismatch 

between the size of total activity in the F0 and F1 layers, and there is a suprathreshold activity 

in the F2 layer.  

 The parameter values of the color ART circuit were set as τx = τy = τg =10 ms, τr = 100 

ms, N = 21, λ = 2, ε2 = ε3 = 2, χ = 2, θ0 = 0.1, θ2 = 1.5, θ3 = 2.5, θr = 1.5, αr = 0.001, and ρ = 

0.96. In the simulation presented in Figure 13, the time constant of the F2 node was drawn from 

the set  25, 50,100x  . In the simulation presented in Figure 14, vigilance was drawn from 

the set  0.5, 0.7, 0.9  . 

 

A.3. Learning in the Color ART Circuit 

 

Synaptic weight wij in the feedforward pathway F1 → F2 is updated according to the 

following equation: 

 

 
     2 1

min ,w ij j w j ij i ij

d
w H x q w x w

dt
      

 
  (20) 

 

where τw is a time constant of synaptic change that may be defined as an inverse of a learning 

rate parameter typically used in neural models of learning. Parameter θw is a static threshold, 

and qj is a dynamic threshold defined in Eq. (21). As before, function minimum denotes a fuzzy 

intersection between the top-down weight vector and the F1 activity vector.  
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Learning occurs in a fast, one-shot manner; that is, one stimulus presentation is 

sufficient to encode it into a weight vector of the winning F2 node. The second term on the r.h.s. 

of Eq. (20) describes a synaptic gate that is open only when F2 crosses the static and dynamic 

threshold. The static threshold is set to a high value, close to the maximal activity level of the 

F2 node. In this way, the static threshold assures that weight adaptation occurs only at the 

synapses of the winning F2 node. When the synaptic gate is open, the weights of the winning 

F2 node approach fuzzy intersection between the F1 activity vector and weight vector. 

The temporal evolution of dynamic threshold qj in Eq. (20) is described by 

 

 
   2

1q j j q j

d
q H x q

dt
      (21) 

  

where τq is a time constant of the dynamic threshold with the constraint that 𝜏𝑞 ≫ 𝜏𝑤 to 

assure that the dynamic threshold elevates only after synaptic weights are adjusted. In this way, 

the dynamic threshold slowly elevates until it closes the synaptic gate in Eq. (20) and prevents 

further change in synaptic weights despite the fact that a stimulus may still be present. In this 

way, the dynamic threshold prevents later events from distorting the learned weights of the 

winning F2 node. That is, after a reset of the current F2 winner, a short period of time exists 

when its activity amplitude decays to zero. During this decay period, there is danger of 

distorting the weight vector of the winning F2 node. The dynamic threshold prevents this from 

happening. 

In the fuzzy ART, bottom-up and top-down adaptive weights are symmetric. Synaptic 

weight wji in the top-down pathway F2 → F1 is thereby updated according to equation analogous 

to Eq. (20): 

 

 
     2 1

min ,w ji j w j ji i ji

d
w H x q w x w

dt
      

 
.  (22) 

 

Synaptic weights in both pathways were initially set to their maximal values 

 

    0 0 1, ,ij jiw w i j     (23) 

 

and dynamic thresholds were set to 
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  0 0,jp j  .  (24) 

 

Parameter values for the learning equations were set as τw = 20 ms, τq = 200 ms, and θw = θq = 

1.5. 

 

A.4. Working Memory Circuit 

 

The activity of the F2 layer is passed forward to the working memory circuit labeled as 

an F4 layer. It has the same anatomical arrangement as in the F2 layer; that is, the F4 layer 

consists of a set of excitatory nodes that are reciprocally connected to an inhibitory interneuron. 

The activity of F4 node 
 4

jx  is governed by the following equation:  

 

 
           4 4 2 4 4

4,x j j k j

k

d
x x S D j k x x y

dt
 

 
     

 
 .  (25) 

 

In Eq. (25), parameter ε4 controls the strength of self-excitation, and distance-dependent 

function D(j, k) is defined by  

 

   1, 1D j k k j


      (26) 

 

where ν controls its spatial spread. The activity of inhibitory interneuron  4
y  is governed by 

the following equation: 

 

 
     4 4 4

y j

j

d
y y x

dt
    .  (27) 

 

The parameter values of the working memory circuit were set as τx = τy = 10 ms, ε4 = 2, and ν = 

20. 

 

A.5. Computation of the Metabolic Response 

 

Metabolic demand mj generated by the neural activity of the F2 node at location j is 

computed as  
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1

0

t

j j
t

m e t dt    (28) 

 

where the integral is taken over the interval from t0 = 0 to t1 = 1,000 ms, and  

 

 

        2
,j k

k

e t G j k x t   (29) 

 

is a convolution of the F2 layer activity with one-dimensional Gaussian function G(j, k) defined 

by 

 

  
 

2

2 2

1
, exp 0.5

2

k j
G j k

 

 
  

  

  (30) 

 

where σ = 3 controls the spatial spread of the Gaussian function. 
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APPENDIX E 

 

Supplemental Materials 

 

 

This appendix contains supplemental materials in the form of Open Science Framework 

links that generate the MATLAB code to reproduce all results reported in this doctoral thesis. 

The MATLAB code for the papers listed in Appendixes A, B, and D is available in the following 

links:  

 https://osf.io/5uf6g/ 

 https://osf.io/9h7ag/ 

 https://osf.io/zphyq/, respectively. 
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